Technology Foresight: a Convenient Tool for the Prioritization of Scientific Research

Key words: technology foresight, key technologies, Delphi method, scenario writing, expert panels, megatrends

Abstract: Technology foresight process is usually undertaken by national authorities in order to stimulate the inclusion of forward looking approach into the science and technology policy planning toolbox. For small countries such as Slovenia, outcomes of the foresight exercise could present a convenient tool in determining research priorities. In the present article the most important methodologies which could be employed in foresight exercise are described and illustrated by examples. In addition, some reasons for the possible failure of the foresight exercise are also mentioned.

1. Uvod

Tehnološko predvidevanje (Technology Foresight) je po definiciji, ki je se je izoblikovala za vse v obdobju zadnjih desetih let, postopek, s pomočjo katerega se skriva izlučiti najbolj verjetne smeri dolgoročnega tehnološkega razvoja, upoštevaje predvsem globalne trende razvoja znanosti in tehnologije, seveda pa tudi lokalno specifiko. Na nivoju države lahko izsledki tehnološkega predvidevanja usmerjajo izobraževalno, znanstveno, tehnološko in industrijsko politiko ter s tem posledično predstavljajo temeljna izhodišča bodočega družbenega in gospodarskega razvoja.

Tehnološko predvidevanje ne more napovedati bodočnosti, lahko pa na nas opozarja na izvije bodočnosti, pomaga nam odkrivati naše prednosti in slabosti, usmerja naše akcije danes, da bi lahko izvize in priložnosti bodočnosti znali izrabiti v svojo korist.

S stališča oblikovalcev znanstvene politike je seveda tehnološko predvidevanje (TP) zelo prikladen pri pomočnik za določanje prednostnih usmeritev, še posebej, ker temeljijo rezultati TP na konsenzu precej širokega spektra sodelujočih. Kljub temu akademska raziskovalna sfera, vsaj tako kažejo izkušnje iz drugih držav, na TP praviloma ne gleda z naklonjenostjo, ker na nek način pač omejuje svobodo raziskovanja, kar je v bistvu v nasprotju s temeljnimi poslanstvom znanosti. Še posebej se to opaža v državah v tranziciji, saj tehnološke prioritete dodatno vse preveč spominjajo na plansko gospodarstvo in je zato TP tudi v gospodarskih krogih in glavnem, vsaj dokler se zadeve ne razčistijo, sprejeman z rezervo. Zato je že na začetku tega prispevka potrebno ugotoviti, da sta obe dilemi odveč.

Svoboda znanstvenega raziskovanja ostaja neokrnjena, država si pač jemlje pravico, da bo vlagala več v bolj uporabno usmerjene cilje temeljnega raziskovanja (tj. anglo-saksonska paradigma znanstvene politike), gospodarstvo pa se mora tudi zavedati, da so določene tehnologije bolj druge pa manj primerne za Slovenijo. Za ministrstvo, ki je pristojno za tehnološki razvoj, je torej semourevno, da se prvenstveno spodbuja tehnologije, ki so npr. ekološko in energetsko sprejemljive, de o obetu visoke dodane vrednosti sploh ne govorimo.

Na vsak način pa se ne da izogniti občutka, da postaja TP neke vrste modna zadeva, da se ga iz tega razloga (dejansko pa na pobudo EU) lotevamo tudi v Sloveniji in bo rezultat dokument, v katerega bo sicer vloženega veliko dela, bo pa, kot mnogo drugih, končal v predalu. Mnenje avtorja tega prispevka je, da bo odločilnega pomena, poleg seveda politične odločitve za TP, podpora podjetniške sferne in pa tistega dela raziskovalcev, ki razumejo in sprejemajo zgoraj omenjeno anglo-saksonske paradigme znanstvene politike.

2. Tehnike predvidevanja

Kljub skeptičnim ugotovitvam, da gre lahko za modno zadevo pa ima tehnološko predvidevanje za sabo že kar nekaj zgodovine in temu primerno so se razvile tudi različne tehnike TP. Na nivoju predvidevanja, ki ga namerava izvesti Ministrstvo za znanost in tehnologijo RS si velja pobližje ogledati naslednje metodologije:

- Ključne tehnologije
- Delfi metoda
– Metoda scenarijev
– Ekspertni paneli

2.a. Ključne tehnologije


Na področju novih materialov so bile kot ključne identificirane sledede družine: - kovine, keramika in kompoziti za konstrukcijske aplikacije, - polimeri in polimeri kompoziti, - magnetni materiali, - optoelektronski materiali, - biokompatibilni materiali, - materiali za embalažo, - tehnologije za recikliranje materialov.

Na področju mikroelektronike so bile kot ključne identificirane sledede družine: - VLSI proizvodni procesi, - VLSI načrtovalni procesi, - VLSI arhitekture, - mikroelektronski močnostni sistemi, - visokofrekvenčne heterostrukturi, - kvantne in nanostrukture, - visokotemperaturni superprevidniki.

Tudi v Sloveniji beležimo poizkus nabora ključnih tehnologij, ki ga je leta 1995 na pobudo MZT izvedel M. Kos s sodelavci /2/, pri čemer je služila kot izhodišče študija o ključnih tehnologijah, ki jo je izdelal Fraunhofer Institut fuer innovations- und Systemforschung /3/. Ocenjevalci so izbrali 18 meril, od katerih jih je 7 ocenjevalo okvirne pogoje, 11 pa prispevek tehnologije k gospodarskim, socialnim, strateškim in tržnim rešitvam. Poleg nabora tehnologij se da iz sklepov povzet pravzaprav pričakovano dejstvo, da se slovensko gospodarstvo, pa tudi država premalo zavedata, da raziskave in razvoj odločajočo vlogo usode gospodarstva in končno naroda v celoti in da bi bilo treba bistveno odločneje usmerjati sredstva v tiste vsebine raziskovanja, ki so podlagen razvoju novih tehnologij in bodo s tem vplivali na konkurenčni položaj slovenskega gospodarstva v začetku 21. stoletja. Čeprav je bilo predvideno, da projekt ne bi bila enkratna akcija ampak ponavljajoč proces, se to na žalost ni zgodilo, ker vsaj po mnenju avtorja tega prispevka ni bilo ustrezne politične podpore.

Kritiki metode ključnih tehnologij predvsem izpostavljajo, da preveč poudarja pomen tehnologije, premaša pa upošteva širše družbeno-ekonomske vidike razvoja.

2.b. Delfi metoda


Kot kritične pripombe na Delfi metodologijo se največkrat omenjajo:

- gre za delovno zelo intenzivno in časovno razmerom dolgoračno proceduro,
- s številom rund zanjevanje za sodelovanje močno upada,
- težnja k konvergenčni mnenj gre v glavlem na škodo neupostevanja manjšinskih, vendar zanimivih mnenj.

Delfi metoda zahteva razpoložljivost izredno številnega strokovnega kadra, zato jo v glavnem uporabljajo velike države (npr. Japonska, Nemčija, Velika Britanija), veliko redke je manjše (npr. Avstrija, Madžarska), ki pa se zato poslušujejo svojo specifičnosti primernih in obstoječih vprašalnikov. Tudi pri izvedbi prve Delfi študije v Nemčiji se je uporabilo japonske vprašalnike.

Za ilustracijo v nadaljevanju navajam primere vprašanj s področja materialov iz zadnje nemške Delfi študije. Odgovoriti je bilo potrebno na naslednja vprašanja (v oklepu so navedeni tudi razpoložljivi odgovori):

- osebna ocena poznavanja ože stroke (dobra, srednje, slabo),
- ocena pomembnosti teme za: splošno širitev znanja; gospodarski razvoj; družbeni razvoj; reševanje okoljevarstvenih problemov; zaposlovanje; na splošno nepomembno,
- predviden časovni okvir realizacije, vključujoč tudi možnost, da je zadeva neizvedljiva,
- država z najbolj razvitim RR potencialom na tem potencialnem področju (ZDA, Japonska, Nemčija, druga država iz EU, druga država izven EU),
- potrebni ukrepi (boljše izobraževanje, pospeševanje sodelovanja gospodarstva z akademsko raziskovalno sfero, pospeševanje mednarodnega sodelovanja, izboljšava RR infrastrukture, vključevanje
večjega števila finančnih akterjev, sprememba zakonodaje, drugo),

− kje so učinki lahko tudi problematični (okolje, državna varnost, družbeni aspekti, drugo).

Primeri vprašanj (v oklepaju je navedeno najbolj verjetno leto do katerega naj bi bila zadeva realizirana):

− razviti bodo organski superprevodniki s temperaturo prehoda 77K (2017),

− ogljikov nitrid s trdostjo višjo od trdote diamanta se bo začel uporabljati kot visoko zmogljiv visokotemperaturni polprevodnik (2013),

− razviti bodo magnetni materiali z nasičeno magnetizacijo višjo od 3T (2009),

− v praksi se bodo pričeli uporabljati organski feromagnetni materiali (2016),

− v praksi se bodo pričeli uporabljati polimerni materiali z enako električno prevodnostjo pri sobni temperaturi kot jo ima baker (2015),

− razviti bodo samoregeneracijski polimerni materiali (2022),

− rešeni bodo tehnološki problemi v zvezi s proizvodnjo elektronskih komponent na osnovi Si-Ga-As tehnologije (2008),

− razvite bodo mikrosistemski tehnike, ki bodo omogočale izdelavo struktur dimenzijama do 10 nm (2010),

− razvit bo superprevodni material s temperaturo prehoda pri sobni temperaturi (2022),

− razvita bo tehnika, ki bo neodvisno od vrste materiala omogočala heteroepitaksijo na silicijevih režinah (2010),

− na razpolago bodo večplastne sončne celice z izkoriščenjem vodnih energetičnih izvorov v višini nad 50% (2020),

Izbrane so bile predvsem take teme, ki so zanimive za bralce časopisa INFORMACIJE MIDEM. V celoti je poglavje »Materiali« obsegalo 104 teme. Več o pričujoči študiji je dosegljivega tudi preko interneta [5/].

2. Metoda scenarijev
Metodo se najbolj predstavlja definicija, da gre v bistvu za organizacijo lahko tudi nasprotujočih si informacij o možnem razvoju dogodkov v bodočnosti, s tem pa so avtorji potisnjeni v izdelavo alternativnih vizij, oziroma stalno je potrebno imeti pred očmi neke vrste samoumevnost nepredvidljivih dogodkov. Po drugi strani pa se metodi očita, da obstaja nevarnost, da previdi samo en možen razvoj dogodkov, da ostaja na pretežno generalnem nivou in zato ni posebej operativna. Po mnenju avtorja je bila v Sloveniji metoda scenarijev uporabljena pri izvedbi študije Slovensko kmetijstvo in Evropska unija [6/].

2. Metoda ekspertnih panelov
Vključevanje ekspertnih panelov, ki so vsebinsko strukturirani po tehnološkem in ali sektorskem ključu je običajno za praktično vse do sedaj izvedene TP, pa tudi tiste, ki so le tretje. Pravzaprav ne gre za samostojno metodologijo, temveč za neke vrste podporo ostalim tehnikam. Res pa je, da vse bolj prevladuje mnenje, da je TP preko panelov (seveda z ustrezno informacijsko in analitsko podporo), primerno zlasti za majhne sisteme (kot je npr. Slovenija), ker za delovanje zadostuje tudi manjše število strokovnjakov. Še posebej pa delo v panelih močno spodbuja dialog širokoga spektra članov panelnih skupin, posledično so na ta način izsledkni dela dostopni razmeroma širši publik, delo v panelih z neposrednimi konfrontacijami različno mislečih spodbuja tolerantno in kreativno razmišljanje ter je vročo orodje mrežnega povezovanja. Pasti pa sta leta 2009. Možno je prevedla mnenje močnih osebnosti ali pa obratno, da so članji panelne skupine preveč ugljeni in se s tem poruši načelo nepristanosti. Zato je sestavljanje panelnih skupin izredno zahtevno. Izkušnje kažejo, da vseko gre izključevati tako ali drugače spornih oseb, pod pogojem seveda, da zadostujejo kriterijam strokovnosti. Kot pozitivna izkušnja iz del panelov TP v Veliki Britaniji pa se omenja posledično bistveno večja stopnja sposobnosti dialoga in povezovanja na področju akademsko raziskovalna sfera – industrijski razvoj. Ker se bomo v slovenskem TP najverjetneje odločili za sistem panelov, navajam kot primer strukturiranje panelov švedskega TP:

− Medicina in javno zdravstvo,

− Biološki naravni viri,

− kmetijstvo in gozdarstvo

− voda

− hranje

− papir in celuloza

− lesni proizvodi

− surovine za bio-maso

− Komunalna infrastruktura,

− sanovanje

− urbanizem

− transport in logistika

− osebje

− regionalni razvoj

− Proizvodne tehnologije in sistemi,

− informacijski in komunikacijski sistemi,

− Materiali in procesi,

− funkcionalni in konstrukcijski materiali

− procesna tehnika

− recikliranje

− kemijsko inženirstvo

− Storitve,

− medijski

− trgovina

− finance

− zavarovalništvo

− proisti čas

− Izobraževanje.

V Sloveniji bomo seveda morali najti strukturno povezavo, ki bodo odsevali naše karakteristike. Opozoriti pa velja, da praktično pri vseh TP opažamo odstopanje od čistih tehnoloških tem, ter da stopajo v osrednje tudi družbeno relevantne teme. Posledično se tudi TP vse pogosteje naslejajo samo kot »Predvidevanje«.
3. Megatrendi

Nekatera države, npr. Avstrijija, Nemčija in Nova Zelandija so pri izvedbi svojih TP izhajale iz predvidovanja širših družbenih in ekonomskih gibanj, ki presegujo okvire držav samih, se bodo pa seveda odškvalivali na lokalnem nivoju. V Avstriji npr. se večina vprašanih strinja, da bo upravljanje s prometom najkasneje v 15 letih bolj pomenljivo kot same tehnične rešitve; enako kot Nemci pa se strinjajo, da bodo visoko industrializirane države trajno soočane z visoko stopnjo brezposelnosti, prav tako pa se obojati tudi strinjajo, da bodo naraščajoči okoljski problemi vse bolj vplivali na zdravje prebivalstva.

V Novi Zelandiji so identificirali sedem globalno relevantnih tem in iz njih izlučili megatrende za nacionalno TP diskusijo. Tako predvidevajo:
- znatne spremembe v sistemih ustvarjanja novega znanja in njegovega razširjanja;
- informacijske tehnologije, genetika, biotehnologija, energetika ter materiali in procesi bodo tista področja, kjer bodo tehnološki preboji največji in tudi najpomembnejši;
- vse večjo relevanco okoljskih problemov (biodiverziteta, voda, odpadki, klimatske spremembe, oznoska luknja);
- naraščajoče družbene probleme (staranje prebivalstva, socialna izključenost, organiziran kriminal in terorizem, bolezni in epidemiemi).

Skozite te megatrende se predvidevanje vse bolj dviguje na nadnacionalni nivo. V primeru EU je potrebno omeniti dve studiji. Prva, Scenarios Europe 2010/71, pri njej je sodelovalo 15 direktoratov, predstavljala več možnih makro scenarijev razvoja EU, vključno z vplivom možnega razvoja dogodkov na proces širjenja. Druga studija, ki je tik pred zaključkom, je Projekt FUTURES /8/ (uporabljena je bila metoda panelov), katerega cilj je definirani kot identifikacija problemov, izizivov in priložnosti, s katerimi se bo srečala Evropa v prihodnjih desetih letih; kajti, kot je dejan J.M.Cadiou, direktor Joint Research Centre inštituta, ki je koordinator projekta, »bo po vsej verjetnosti naslednjih deset let obdobje največjih sprememb v zgodovini Evrope v minrem času«. Osnovne teme Projekta FUTURES so tehnološka konkurencenost Evrope, problem zaposlovanja oz. odpiranja novih delovnih mest, starajoče prebivalstvo, mobilnost na segmentih podobnega vseh mejnih mest, tehnološka konkurenčenost, mobilnost.

Evropa v povprečju tehnološko zaostaja za ZDA na praktično vseh razvojnih pomembnih tehnologijah, medtem ko je z Japonsko trenutno še primerljiva; res pa je, da je na določenih segmentih, kot so npr. mobilne komunikacije, razvoj zdravil, senzorji/aktuatorji, izkazuje razlike v rednihnjenih, drugih. V Avstriji, kot npr. fotografika, umetna inteligence, keramični materiali pa šablonski.

Glede mobilnosti se strinjo z žalostjo ugotavlja, da je nizka, precej mladih talentov se odloča za zaposlitev v ZDA, medtem ko je obratni tok zanemarljiv, kar pomeni, da bodo potrebno evropsko RR sceno narediti bolj privlačno za mlade strokovnike iz prekomorskih dežel.

4. Kritični pogledi na TP

Podobno kot ima TP mnogo zagovornikov ne manjca tudi kritičnih pogledov, ki se jih da povzeti v sedmih točkah /9/:
- TP pogosto izhaja iz predpostavke da bodo nove tehnologije popolnoma zamenjale stare, in to v razmeroma kratkem času. V resnici pa tekmujoče tehnologije koeksistirajo tudi skozi daljša obdobja.
- Pogosto je prisotno prepričanje, da bodo nove tehnologije rešile stare probleme oziroma izpopolnile obstoječe tehnološke sisteme. V resnici pa nove tehnologije pretežno vodijo do popolnoma novih tehničnih rešitev.
- TP obravnava tehnološki razvoj zelo ozko segmentiranje. Praksa pa kaže, da največje razvojne možnosti običajno nudijo kombinacije različnih tehnologij in znanj.
- Izvajalci TP so pogosto »ujeti« v svoj čas, kar posledično vodi do zmotnega prepričanja, da bodo velike teme sadanjo kuvali tudi velike teme prihodnosti.
- Za večino TP je značilno, da se preveč poudarja pomen tehnologije, zanemarja pa se ekonomsko pokazatelji. Na kratko, pogreša se cost/benefit analiza.
- Poleg ekonomike so seveda tudi drugi vrednotni sistemi, ki vplivajo na sprejemljivost novih tehnologij in tudi TP običajno tudi ne upošteva.
- Podloga mnogih TP študij so lahko tudi pomanjkljive informacije. Ne sme se pozabiti, da veliko znanstvenih raziskovanj in tehnološkega razvoja poteka pod oznako »strogo zaupno« (npr. vojaške raziskave).

5. Zaključek

Glede na število držav, ki so se odločili, da iz določenega razloga prisplopoji k TP, vse pogosto pa kar k integralnemu predvidevanju, seveda vsaka s svojimi specifičnimi izhodišči, cilji in nameni, lahko ugotovimo, da vendarle ne gre za modni pojav, ampak za enostavno nujo, saj smo se znašali v času, ko se turbulento sprememb prevaruje pravila igre na vrti vitalnih segmentov določene družbe. Mnogi strokovnjaki zagovarjajo stališče, da bo kontinuiteta sprememba neke vrste permanenten pojav v celotnem 21. stoletju. Pa tudi čemu ne bo tako, se ne da napovedati kako dolgo bodo te turbulence trajale, predel se bo – če se seveda sploh bo – situacija umirila in se bo ustalil določen ekonomski in družbeni red, ki bo zagotavljal dolgoročno segrednost. Proces predvidevanja tako »pod nujno« usmerja našo pozornost na prihodnost in nas seveda tudi, kot majhen gospodarski sistem, opozarja na pomen sposobnosti fleksibilnega odzivanja. Poudarjam pa, ne na osnovi ad hoc odločitev, katerih podloga bi bila trenutno aktualna politika, temveč tudi na osnovi TP, ali pa kar integralnega predvidevanja, ki z variantami z knszenzom sprejetih scenarijev omogoča zadosti široko strokovno oporno nosilcem odločanja.

Te vrste razmišljanja je vodilo Ministarstvo za znanost in tehnologijo, da v predlog programa Vlade RS podpore gospodarskim družbam pri razvoju novih tehnologij in
vzpostavljanju in delovanju njihovih razvojnih enot v obdobju 2000 – 2003 vključi tudi izvedbo TP. Rezultati TP se bodo morali, če bo le zadosti politične volje, odražati v sistemu financiranja temeljnega in aplikativenega raziskovanja, konkretno v dajanju prednosti raziskavam, ki so osnova propulzivnih, za Slovenijo relevantnih tehnologij bodočnosti.

6. Literatura


/5/ www.futur.de


/8/ www.futures.jrc.es


Dr. Miloš Komac
Ministrstvo za znanost in tehnologijo
Trg OF 13
1000 Ljubljana
Tel: 386 (0)61 178 4600
Fax: 386 (0)61 178 4719
Email: milos.komac@mzt.si

Prispelo (Arrived): 15.05.00
Sprejeto (Arrived): 25.05.00