Delaying analogue quadrature signals in Sin/Cos encoders

Tomaž Dogša, Mitja Solar, Bojan Jarc

University of Maribor, Faculty of Electrical Engineering and Computer Science, Slovenia

Abstract: Various measurement and control systems use magnetic or optical encoders that transform linear displacement and other physical quantities to an analogue quadrature signal. In this paper, we study the problem of, how to accurately delay the analogue quadrature signals in the Sin/Cos encoders within the range of ±10° with the circuit that is potentially integrable on a single chip. Such precision is needed for the efficient phase shift compensation. The typical analogue delay circuit comprises a summing amplifier and a digitally controlled variable resistor that is used to set a delay. We propose a new circuit based on the voltage divider with better linearity and a completely symmetrical range. The design procedure for the delay circuit is also presented.

Keywords: quadrature encoder signals, phase delay, error analysis, delay circuit, analogue quadrature signals.

1 Introduction

Various measurement and control systems use magnetic or optical encoders that transform linear displacement, the angular position, velocity, and other physical quantities to an analogue quadrature signal. The precision of the system is further improved with the interpolator. The ideal quadrature signals consist of two periodic signals with equal amplitudes and a relative phase shift of 90°. The signals are usually denoted as signal A and signal B or SIN and COS signal (Fig. 1).

Imperfections of encoders and quadrature signals are the major cause of the interpolation error. A method for estimating the accuracy of quadrature output sensors is proposed in [1-2]. The reduction of the imperfections can be performed either in software or implemented with the conditional circuit which is inserted between the output sensors and the interpolator [3]. Authors [4-8] proposed various interpolation algorithms that reduce the imperfections of the signals. These approaches generally require high-precision ADCs and a high-speed DSP to compute the angle to the required resolution. A harmonic distortion reduction achieved by adequate design of a reading-plate is also reported in [9].

All proposed methods are aimed toward the compensation of the imperfections. In this paper, we focus on the problem of how to precisely set the small delay $\Delta \varphi$ of the analogue quadrature signal within the interval (-10°, 10°). Such precision is needed for the efficient phase shift compensation. The most straightforward way to delay an analogue harmonic signal is to use a circuit with at least one reactance as in the analogue
The ideal quadrature signals consist of two periodic signals with equal amplitudes and with a relative phase shift of 90°. The actual signals are harmonically distorted, have unequal amplitudes ($V_s \neq V_c$), have DC offset (V_0) and a phase shift offset ($\Delta \phi_0$). If the harmonic distortion is neglected then signals can be expressed as

$$V_s(t) = V_s \sin(\omega t) + V_{os}$$ and $$V_c(t) = V_c \cos(\omega t + \Delta \phi_0) + V_{oc}$$

(1)

It will be assumed that signal B has to be delayed, and the total shift is smaller than 10°

$$|\Delta \phi_0 + \Delta \phi| \leq \Delta \phi_{max}, \quad \Delta \phi_{max} = 10^\circ$$

(2)

Given is the required phase shift step k_ϕ and delay interval ($\pm \Delta \phi_{max}$). Let b denote the control signal. Then the characteristic of an ideal delay circuit is specified by

$$\Delta \phi(b) = \pm k_\phi b, \quad b = 0, 1, 2 \ldots b_{max}$$

(3)

The most straightforward way to delay an analogue harmonic signal is to use a circuit with at least one reactance as in the analogue phase shifter. Yet these solutions are frequency dependent. The second method is based on a trigonometric identity: adding a fraction of signal A to signal B (see Fig. 2) delays a cosine signal.

$$V_{c_{out}} \cos(\omega t + \Delta \phi) = V_c \cos(\omega t) + k_s V_s \sin(\omega t)$$

(4)

where -1 < k_s < 1. Let k_s denote the amplitude imbalance of the signals A and B

$$k_s = \frac{V_s}{V_c}$$

(5)

Note that value of the actual amplitude imbalance k_s is not known precisely and may vary within known ranges.
\[\Delta \varphi(k, \Delta \varphi_0) = 45° - \frac{\Delta \varphi_0}{2} + \arctan \left(\frac{k, k - 1}{k, k + 1} \right) \left(\cos \Delta \varphi_0 \right) \]

Note, that delay does not depend solely on \(k \), but also on the phase shift offset \(\Delta \varphi_0 \) and amplitude imbalance \(k \) as well. Furthermore, adding the signal B also increases/decreases the amplitude of signal A for \(\Delta V_c \) (see Fig. 2)

\[V_{c_{\text{out}}} = \sqrt{(kV_s)^2 + (V_c)^2 - 2kVV_c \sin \Delta \varphi_0} = V_c + \Delta V_c \quad (7) \]

If there is no initial phase shift offset (\(\Delta \varphi_0 = 0^\circ \)) the equations (7) reduces to

\[V_{c_{\text{out}}} = V_c \cos \Delta \varphi \; ; \; \Delta \varphi > 0 \]

\[V_{c_{\text{out}}} = V_c \cos \Delta \varphi \; ; \; \Delta \varphi < 0 \]

To set a required delay digitally, \(k \) in (6) has to be controlled by the digital signal \(b \). If \(\Delta \varphi_0 = 0^\circ \), the equation (6) simplifies to

\[\Delta \varphi(b) = \text{arctg}(k, k(b)) \quad , \; b = 0, 1, 2 \ldots b_{\text{max}} \quad (9) \]

The relation (9) is approximately linear\(^1\), if \(k \) is small

\[\Delta \varphi(k) \approx \frac{180}{\pi} k \quad (10) \]

The required range of \(k \) is

\[k = \pm \frac{\Delta \varphi_{\text{max}} \pi}{180} \quad (11) \]

If \(\Delta \varphi_{\text{max}} = \pm 10^\circ \) is chosen, then the required range of \(k \) is \(\pm 0.1745 \). The biggest change of the amplitude within this range is \(\pm 1.5 \% \).

Fig. 3 (a) shows typical implementations of the equation (4) \([3, 9, 10]\). A small amount of signal A is added to signal B using a summing amplifier. A desired fraction of signal A is set by the value of \(R_d \), whereas \(R_{bs} \) is needed for setting the step of the delay. The influence of the wiper’s resistance\(^2\) \(R_w \) (see Fig. 4) and the week linearity are the main disadvantages of this variant. We propose a new circuit based on the voltage divider with better linearity and a completely symmetrical range (Fig. 3(b)). For these reasons we decided to study variant based on the voltage divider.

2.1 Delay circuit

A scheme of the implemented circuit shown in Fig. 3(b) is presented in Fig. 5. A delay is set by digital potentiometer RD. The unity gain amplifier \(A_5 \) eliminates the

\[\text{Figure 3: Two possible configurations of the delay circuits} \]

\[\text{Figure 4: Simplified model of a digital potentiometer} \]

\[R_w \text{ with N segments and the additional resistor} \ R_{bs}. \] \(R_w \) is a resistance of the CMOS switch.

influence of the wiper’s resistance \(R_w \). All control signals for the digital potentiometers are generated with FPGA module. The fraction of the signal A is added to a signal B by a specially designed summing amplifier \(A_2 \). Unity gain amplifiers \((A_6, A_7) \) may be neglected if the output resistance of the sensors is low. Out of the many imperfections only the amplitude imbalance \(k \) will be considered in the analysis that follows. Since DC offset affects phase shift, all opamps should have low offset voltage.

\[^1\] \(\text{arctg}(x) = (x - x^3/3 + x^5/5 - ...) \)

\[^2\] For the 128-tap, 100kW digital potentiometer MAX5439 is \(R_w = 0.9 \ldots 2kW \)
First, we rewrite the equation (9) into the form

$$\Delta \varphi(b) = \arctg(k_s A_1(b) A_2)$$ \hspace{1cm} (12)

where A_1 is a gain of the summing amplifier and $A_2(b)$ is the attenuation of the voltage divider. By applying a model of N-bit digital potentiometer (see Fig. 4), we obtain

$$A_2(b) = \frac{b}{N + b_s}$$ \hspace{1cm} (13)

Note that b is in the numerator, which means that A_2 is linearly dependent on b. Let A_c denote the gain u_c/u_5 and A_1 the gain u_2/u_5

$$A_c = \frac{u_2}{u_5} = -R1/R2$$ \hspace{1cm} (14)

The analysis of the circuit gives

$$u_2 = A_c V_c \cos \alpha + A_1 k_s A_2(b) V_c \sin \alpha =$$

$$= A_c V_c (\cos \alpha + k_s A_2(b) \sin \alpha)$$ \hspace{1cm} (15)

This proves the correct implementation of the theoretical model (4). Note, that A_c does not affect the phase shift but the amplitude of the delayed signal.

The sign of the delay is controlled by MOS switches M1 and M2. For $\Delta \varphi<0$ is M1 OFF and M2 is ON. If the change of amplitude (8) cannot be tolerated, then the amplitude correction is needed. If the amplification of cos signal, that is defined by ratio R1/R2, is greater than one, then oversized output amplitude can be adjusted with a divider RDP2 that is controlled by the amplitude detection circuit. By choosing $R2=R3=R4$, we obtain

$$A_2 = \frac{u_2}{u_z} = -\left(\frac{R1}{R3+R4} \right) = -\frac{A_1}{2}$$ \hspace{1cm} (16)

To achieve positive delay the summing amplifier is transformed by the switches M1=ON, M2=OFF to the non-inverting type with the same inverted gain.

$$A_s = \frac{u_z}{u_5} = \frac{R6}{R5+R6} \left(1 + \frac{R1(R2+R3)}{R2R3} \right) = \frac{A_s}{2}$$ \hspace{1cm} (17)

The equal gain (11) is obtained by the appropriate ratio $R6/R5$:

$$\frac{R5}{R6} = \frac{2}{A_c} + 3$$ \hspace{1cm} (18)

Note that gains A_1, A_2 and A_c are well defined since they depend on the ratio of resistors. A_c has to be greater than one to ensure that the amplitude of u_c will always be greater than V_c. This oversized output amplitude of cos signal is reduced to V_c with a divider RDP2 that is controlled by the amplitude detection circuit.

The equation (12) can be rewritten now

$$\Delta \varphi(b) = \arctg\left(\frac{k_s}{2} \frac{b}{N + b_s} \right)$$ \hspace{1cm} (19)

If the amplitude imbalance k_s is unknown then k_s has to be considered as a random variable. In order to reduce the phase error, amplitudes has to be equalized by a special circuit. For small delays is (19) approximately linear

$$\Delta \varphi(b) \approx \frac{180 k_s}{\pi} \cdot \frac{b}{2 (N + b_s)} = \Delta \varphi_{step} b$$ \hspace{1cm} (20)

By rearranging (18) and setting $\Delta \varphi_{step} = k_s$ we can derive a designing rule for R_{step}

$$R_{step} = \frac{90k_s}{\pi k_s} - N$$ \hspace{1cm} (21)

2.2 Reducing the systematic error due to the nonlinearity

Let $\Delta \varphi_{err\rightarrow i}$ denote the systematic error, which is the difference between a measured $\Delta \varphi(b)$ and the target value

$$\Delta \varphi_{err\rightarrow i}(b) = \Delta \varphi(b) - k_s b$$ \hspace{1cm} (22)

One reason for the $\Delta \varphi_{err\rightarrow i}$ is a nonlinear function \arctg in (12). If the argument of the \arctg follows tg function, then the nonlinearity is eliminated:

$$\Delta \varphi(b) = \arctg(k_s A_1(b) A_2) =$$

$$= \arctg(k_s A_1(b) A_2) =$$

$$= \arctg(k_s A_1(b) A_2) =$$

The simplest way to implement this idea is to adequately change the value of the signal b. Let b_{α} denote modified control signal.
From (23) we can derive a modification rule $b \rightarrow b_p$:

$$b_p = b + \Delta b$$

From (24) we can derive a modification rule $b \rightarrow b_p$:

$$b_p = \lfloor 0.5 + \frac{2(N + b_1)}{k_A} \arctan \left(\frac{b}{2(N + b_1)} \right) \rfloor$$

Figure 6: The solution of (25) and (24)

From the solution of (24) and (25) a simple modification rule can be constructed (see Fig. 6). If the range of the control signal is $b = 1 \ldots 127$, then the rule is

- if $(b \leq 78)$ then $b_p = b$
- if $(78 < b < 113)$ then $b_p = b + 1$
- if $(b \geq 113)$ then $b_p = b + 2$

Note that the modification rule reduces the range

$$b_{max} = N - \Delta b_{max}$$

For example, if $k_A = 0.1^\circ$ and $N = 127$, then the biggest error is $\Delta \varphi_{err,s} = -0.15^\circ$ (Fig. 7(b)). By using the correction of the signal b, the error is not completely eliminated yet substantially reduced: $-0.06^\circ < \Delta \varphi_{err,s} < +0.06^\circ$ (see (Fig. 7(a))).

3 Example of the design procedure

Given are: $k_e = 0.1^\circ$, $\Delta \varphi_{max} \leq 10^\circ$, $\Delta \varphi_{min} \geq -10^\circ$, $k_A = 1$

128-tap, 100kΩ digital potentiometer MAX5439 was selected for a prototype with discrete components. This means: $R_g = 100 \, k\Omega$, $N = 127$ and $R_{step} = 787 \, k\Omega$. If the integrated version were planned then N would be 101. Equation (21) gives $b_e = 159$ and $R_{step} = 125k\Omega$. A_e was chosen 11/10 and $R_2 = R_3 = R_4 = 10k\Omega$. Equations (14) and (18) determine the value of $R_{1} = 11k\Omega$ and $R_{5} = 53k\Omega / 11k\Omega$. The resulting theoretical characteristics (19) of the delay circuit are:

$$\Delta \varphi(b) = -\arctan \left(\frac{b}{572} \right) ; \ b = 0, 1, 2, \ldots, 125$$

$$\Delta \varphi_{err} = 12.5^\circ , \Delta \varphi_{min} = -12.5^\circ , |\Delta \varphi_{err,s}| < 0.06^\circ , |\Delta \varphi_{step}| = 0.1^\circ$$

4 Measurement results

To estimate a worst-case a SPICE simulator was applied. OPA27 amplifiers and two digital potentiometers (128-Tap MAX5437 and MAX5439) were used in the prototype circuit. The magnetic encoder sensor was replaced by the signal generator that generates almost perfect signals. Each delay was measured 100 times with digital oscilloscope LeCroy LT344. Data for the positive delay are shown in Fig. 8. The signal generator had an offset delay ($\Delta \varphi_{err}(b = 0)$) which was removed in the analysis. The biggest total error $\Delta \varphi_{err} = 0.39^\circ$ was at 10°. Best results were in the range from 0° to 5° where total error was below 0.2°.

Figure 8: Simulation and actual measurement results ($f = 1$ kHz)

3 The negative delay had even better results
5 Conclusions

In order to achieve a precise delay, low-offset voltage opamps are required and the circuit has to be designed in such a way, that the delay depends only on the ratio of the resistors. The design procedure for the delay circuit was developed: two out of four parameters (N, A_c, k, ∆j_max) can be chosen, the other two are calculated. If the signals are perfect and frequency is low, then the precision of the delay is limited only by the systematic error Dj_err_s and the resistors ratio. In the ideal case the phase step defined by Dj_step = Dj_max / N = 10°/128 = 0.08°. The actual usable Dj_step depends on the quality of the signal and on the tolerances as well. To verify the theoretical results the SPICE simulation was applied and a discrete prototype of the delay circuit was built. The prototype shows that with the discrete elements it is possible to obtain the total error below 0.2° in the range from 0° to 5°, if signals are of good quality. To obtain more reliable yield estimation the additional tolerance analysis is needed.

6 References

Arrived: 03. 10. 2013
Accepted: 08. 01. 2014