Voltage Mode Electronically Tunable Full-wave Rectifier

Predrag B. Petrović

University of Kragujevac, Faculty of Technical Sciences Čačak, Čačak, Serbia

Abstract: The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to a fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of low-level input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.

Keywords: bipolar transistor circuits; circuit analysis; circuit simulation; error analysis; rectifiers

1 Introduction

Rectification is the essential and demanding aspect of signal processing in instrumentation, measurement and control. Rectifiers are widely applied in signal processing, signal–polarity detectors, amplitude modulated signal detectors, AC voltmeters and ampermeters, watt meters, RF demodulators, function fitting error measurements, RMS to DC conversions, sample and hold circuits, peak value detectors, clipper circuits [1-3], etc. Owing to the threshold voltage of diodes, conventional diode rectifiers are limited and are only used in specific applications, such as DC voltage supplies. However, simple diode rectifiers cannot be used for applications requiring accuracy in the threshold voltage range. This can be overcome by using high precision integrated circuit rectifiers.

Although the use of current-mode (CM) active devices is restricted to current processing, it offers certain advantages such as higher usable gain, more reduced voltage excursion at sensitive nodes, greater linearity, lower power consumption, wider bandwidth, better accuracy and larger dynamic range compared to that of their voltage-mode counterparts. The CCII is a reported active component, especially suitable for the class of analog signal processing. However, the CCII cannot control the parasitic resistance at the \(R_x \) port, therefore – when it is used in some circuits, it inevitably requires external passive components, especially resistors [2]. This makes it inappropriate for IC implementation, as it occupies a greater chip area, high power dissipation and excludes electronic controllability. On the other hand, the recently introduced second-generation current-controlled conveyor (CCCII) has the advantage of electronic adjustability over the CCII [4]. Also, the use of dual-output current-conveyors is found to be useful in the derivation of current-mode single input circuits.
In order to improve performance of OA-based circuits the use of the current conveyor was proposed in [5]. The full-wave rectifier [6], with a single three-output CCCII, two MOS transistors and a resistor with large cross-over distortion, was able to perform rectification at lower frequencies, e.g. 5 kHz. The papers [7-8] described full-wave rectifier circuits based on usage of two second-generation current conveyors (CCII+s) and four diodes. The rectifier circuits [9-10] offer a wide dynamic range and show a broadband operation thanks to the use of a CMOS class AB amplifier and current rectifier operation. The rectifier capable of providing output voltages nearly at the level of the input voltage combined with low power consumption is described in [11], which was also achieved through the circuit design proposed here. In [11], CMOS integrated active rectifier concept as an innovative approach for higher efficiencies is used.

A full-wave rectifier proposed in [12] is based on the usage of two plus-type second-generation current conveyors (CCII+s) and three MOSFETs. A voltage-mode (VM) rectifier with high-input impedance using dual-X current conveyors (DXCCII) and three MOSFETs, without passive components, is described in [13]. In [14], the current-mode (CM) rectifier uses two CCII+s and four diodes. The CM rectifier based on one current conveyor and one universal voltage conveyor (UVC) and two diodes is introduced in [15]. The circuits proposed in [16] employ at least two current and/or voltage conveyors as active elements and two diodes, and works in CM. A CM full-wave rectifier circuit with one active element – current differencing transconductance amplifier (CDTA) and four diodes and one resistor is reported in [17]. The circuits proposed in [18-19] are designed based on MOS transistors with fairly simple structure. The rectifier [18] requires a floating input voltage source, while the circuit [19] needs three external bias current sources to be realized separately. The circuits in [20], [21] use CDTA or DXCCII which have more complex internal structures with respect to CCII and DVCC. A CM full-wave rectifier based on a single modified Z-copy current difference transconductance amplifier (MZC-CDTA) and two switches is reported in [22].

This paper presents the principles of operation, and the detailed circuit design of the new bipolar realization of the full-wave rectifier. The features of the proposed circuit are: it employs one MO-CCCII, one zero-crossing detector, and one resistor connected to source voltage, which is suitable for fabrication in a monolithic chip. Unlike the rectifier described in [2-3], which was realized using the CMOS technology, the one described in this paper involves a simpler and more accurate control structure. Besides, the proposed circuit does not require a more precise bias voltages realization and complex transistor pairing, which was typical of the realizations described in [2-3]. The rectifier circuit provides the operating frequency of up to 10 MHz, with increased linearity and precision in processing of low level input voltage signals. The performance of the proposed circuit is illustrated by PSpice simulations, showing a good agreement with the calculation. The circuits proposed in this paper have been compared to similar circuits reported in literature.

2 Proposed full-wave rectifier circuits

Fig. 1 presents the proposed circuit of the full-wave rectifier.

![Figure 1: The proposed circuit of the full-wave rectifier](image)

Conceptually, the rectifier presented in Fig. 1 is very similar to the one proposed in [6], the former, however, having more precise and new zero-crossing detection (ZCD) circuits, and without shunting of the high output of MO-CCCII. The proposed ZCD circuits demand considerably less resistance in the output stage (50 times) compared to the realization in [6]. This modification ensures greater linearity rectification within a wider frequency range. Additionally, this configuration imposes no limitations in realization of the analog switch, contrary to the circuit described in [6].

![Figure 2: Electrical symbol of MO-CCCII](image)
Generally, a MO-CCCII is a multiple-terminal active building block, as shown in Fig. 1. The electrical symbol of the MO-CCCII is shown in Fig. 2.

The port relations of the MO-CCCII can be presented by the following equation:

\[i_y = 0; v_x = v_y + i_x R_x; i_{x+} = +i_x; i_{x-} = -i_x \] \hspace{1cm} (1)

The schematic bipolar realization is shown in Fig. 3 [23]. According to equation (1), the MO-CCCII has a unity voltage gain between terminal y and x and a unity current gain between terminal x and z. The \(R_x \) is an inner resistance of a translinear mixed loop (Q₁, to Q₇) with grounded resistor equivalent controlled by bias current \(I_p \). In this case, the parasitic resistance \(R_x \) at the terminal x can be expressed by:

\[R_x = \frac{V_T}{2I_B} \] \hspace{1cm} (2)

where \(V_T = 26 \text{ mV at 27°C} \) is the usual thermal voltage given by \(kT/q \), \(k = \text{Boltzmann’s constant} = 1.38 \times 10^{-23} \text{ J/K} \), \(T \) the absolute temperature (in Kelvin’s), and \(q = 1.6 \times 10^{-19} \text{ C} \) and \(I_B \) (Fig. 1) is the bias current of the converter which remains tunable over several decades.

\[\text{Figure 3: Bipolar realization of MO-CCCII} \]

Precision in processing of the input voltage signal is directly dependent on the manner in which ZCD is able to reliably detect the moment when the input signal changes the polarity. This required the construction of new bipolar detector circuits, as shown in Fig. 4. The transistors Q₁ and Q₂ will promptly follow the variations in input voltage, thus reducing the total delay time of the comparator. The resistor \(R_1 \) has one end attached to the source from which it is powered together with the detectors. The resistor can be coupled to the source of a different voltage level, if this should prove necessary due to the demands of analog switches (realized with two complementary MOS transistors).

By the routine analysis of the proposed full-wave circuit shown in Fig. 1 and using the properties of MO-CCCII, for \(v_{in} > 0 \), the z+ current \((v_{in}/R_x) \) to pass on to the load.

\[v_{out} = \frac{R_1}{R_{in}} v_{in}; \quad v_{in} \geq 0 \] \hspace{1cm} (5)

\[v_{out} = -\frac{R_1}{R_{in}} v_{in}; \quad v_{in} < 0 \] \hspace{1cm} (6)

where \(R_{in} = R_x \). The equations (5) and (6) can be presented in form:

\[v_{out} = \frac{R_1}{R_{in}} \left| v_{in} \right| \] \hspace{1cm} (7)

Based on (7), it is obvious that the voltage value at the output of the proposed circuit corresponds to the rectified value of the input sinusoid signal with amplification or rectifier with attenuation. In the proposed
circuit, rectification is not performed by diodes, which implies fewer ripples, compared with the known diode rectifier circuits [14-17]. It is also possible to perform low-voltage (below threshold level of the diode) rectification using the proposed circuit.

3 Non-ideal Effects

The effects of MO-CCCII and comparator non-idealities on the full-wave rectifier performance are to be considered in this section. By considering the non-ideal MO-CCCII characteristics, equation (1) can be rewritten as:

\[i_y = 0; v_x = \alpha v_y + i_x R_x; i_z^+ = +\beta_p i_x; i_z^- = -\beta_n i_x \]

(8)

where \(\alpha = 1 - \varepsilon_v \) and \(\varepsilon_v \) (\(|\varepsilon_v| << 1\)) represents the voltage tracking error from \(y \) to \(x \) terminal, \(\beta_p = 1 - \varepsilon_p \) and \(\varepsilon_p \) (\(|\varepsilon_p| << 1\)) denotes the current tracking error from \(x \) to \(z^+ \) terminal, while \(\beta_n = 1 - \varepsilon_n \) and \(\varepsilon_n \) (\(|\varepsilon_n| << 1\)) stands for the current tracking error from \(x \) to \(z^- \) terminal of the MO-CCCII, respectively. Generally, these tracking factors remain constant and frequency independent within low to medium frequency ranges. Typical values of the non-ideal current transfer gains and the transconductance inaccuracy factor \(\alpha, \beta_p \) and \(\beta_n \) range from 0.9 to 1, with an ideal value of 1. However, at higher frequencies these tracking factors become frequency dependent. Given the non-idealities, currents generated from MO-CCCII can be defined as:

\[i_{\text{out}}^+ = i_{z^-} - i_{z^+} = \left(\beta_p - \beta_n \right) \frac{\alpha v_{\text{in}}}{R_{\text{in}}} \]

(9)

\[i_{\text{out}}^- = 2\beta_p \frac{\alpha v_{\text{in}}}{V_T} I_B = 2\beta_p q \frac{\alpha v_{\text{in}}}{kT} I_B, \quad v_{\text{in}}(t) \geq 0 \]

(10)

\[i_{\text{out}}^- = -2\beta_n \frac{\alpha v_{\text{in}}}{V_T} I_B = -2\beta_n q \frac{\alpha v_{\text{in}}}{kT} I_B, \quad v_{\text{in}}(t) < 0 \]

(11)

which results in an absolute error as:

\[\text{Error} = |i_{\text{out}} - i_{\text{out}}| \]

(12)

As for equations (10) and (11), the tracking errors slightly change the output current of the proposed full-wave circuits. However, the above relation does not include error when determining the interval in which the input voltage signal is negative (the ZCD error), which also defines the precision of the proposed rectification process. Fig. 5 a) shows the waveform of the output voltage in response to an input voltage step of \(\pm 50\text{mV} \) for the proposed comparator. In Fig. 5 b), the average delay times of the proposed comparator as a function of the input voltage amplitude is reported. As can be seen, at low input voltages, the response time of the proposed circuit is very small. The higher the input voltage, the lower the delay time, as the enhanced output voltage swing (due to the higher voltage values) causes \(Q_1 \) and \(Q_2 \) to completely turn-off. Simulation results confirm the fact that the proposed ZCD circuits are capable of high precision processing of the input signal. It is assumed that the incremental sensitivities of the output current \(i_{\text{out}} \) at parameters \(\alpha, \beta_p, \beta_n \) and \(T \) are: 1; 1; 1 and -1 (all the active and passive sensitivities are of an equal unity in magnitude). Thus, the proposed circuit exhibits a low sensitivity performance.
The error (12) is a function of input voltage signals and varies depending on its content. A way to express the error is to consider the values of the observed parameters as random quantities characterized by their PDFs (Probability Density Function). Therefore, the interval having a 2ε width, around the nominal value of the observed parameters needs to be defined and associated with a certain distribution, e.g. uniform distribution.

The Monte Carlo approach [24] gives the lower and upper limits of interval which contains 95% of error samples. The Monte Carlo analysis in PSpice was used for simulations with a given error on different parameters and components (Monte Carlo predicts the behaviour of a circuit statistically when part values are varied within their tolerance range by 5%), Fig. 6. This test is very useful for visualizing how a circuit runs with imperfect parameters as are used in reality. The number of individual simulation was 2000.

Figure 6. The distribution of errors, for the divergence in the value of the parameters, from their nominal values

4 Simulation Results

To confirm the given theoretical analysis, the proposed voltage-mode bipolar full-wave circuit in Fig. 1 was simulated using the PSpice program. The MO-CCCII and ZCD were realized by the schematic bipolar implementations given in Figs. 3 and 4, with the transistor model parameters of PR200N (PNP) and NP200N (NPN) of the bipolar arrays ALA400 from AT&T [25], Table 1. The supply voltages and the values of the bias currents were +V = −V = 1.2 V and I_B = 300 μA respectively, whereas the input voltage was within the range of ±100 mV. Parameters of National Semiconductor circuits AH510 [26] were used as analog current switch during simulation.

Table 1: PR200N and NP200N transistor parameters

<table>
<thead>
<tr>
<th>Transistor type: NP200N</th>
</tr>
</thead>
<tbody>
<tr>
<td>.MODEL NX2 NPN RB = 262.5 IRB = 0 RBM = 12.5 RC = 25 RE = 0.5 IS = 242E - 18 EG = 1.206 XTI = 2 XTB = 1.538 BF = 137.5 IKF = 13.94E - 3 NF = 1.0 VAF = 159.4 ISE = 72E - 16 NE = 1.713 BR = 0.7258 IKR = 4.396E - 3 NR = 1.0 VAR = 10.73 ISC = 0 NC = 2 + TF = 0.425E - 9 TR = 0.425E - 8 CJE = 0.428E - 12 VJE = 0.5 MJE = 0.28 CJ = 1.97E - 13 VJC = 0.5 MJC = 0.3 XCJC = 0.06 SC = 0.17E - 8 VJS = 0.64 MJS = 0.4 FC = 0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistor type: PR200N</th>
</tr>
</thead>
<tbody>
<tr>
<td>.MODEL PX2 PNP RB = 163.5 IRB = 0 RBM = 12.27 RC = 25 RE = 1.5 IS = 147E - 18 EG = 1.206 XTI = 1.7 XTB = 1.866 BF = 110.0 IKF = 4.718E - 3 NF = 1.0 VAF = 51.8 ISE = 50.2E - 16 NE = 1.65 BR = 0.4745 IKR = 12.96E - 3 NR = 1 VAR = 9.96 ISC = 0 NC = 2 + TF = 0.610E - 9 TR = 0.610E - 8 CJE = 0.36E - 12 VJE = 0.5 MJE = 0.28 CJ = 0.328E - 12 VJC = 0.8 MJC = 0.4 XCJC = 0.074 CJS = 0.13E - 9 VJS = 0.55 MJS = 0.35 FC = 0.5</td>
</tr>
</tbody>
</table>

The time response of the proposed ZCD circuits is shown in Fig. 7, where the input voltage signal is of 1 MHz frequency and 20 mV peak. The simulation process. This clearly infers that the proposed solution detectors are able to sense polarity of the input voltage signal with high precision, thereby the error resulting from imprecision in detection is negligible in practical applications.

Figure 7: Time-domain response of proposed ZCD

The DC characteristic of the proposed circuit at a frequency of 1 MHz is shown in Fig. 8. Fig. 8 implies that
the proposed circuit retains a linear character in a wide voltage range.

Fig. 9 shows the waveform of the signal at the output of the circuit shown in Fig. 1 (voltage v_{out}), at different frequencies. For these simulations, the input signal is taken as a sinusoidal voltage signal at 40 mV peak value, the selected frequencies ranging from 1 kHz to 10 MHz. Fig. 9 shows that the output waveform of the proposed rectifier is in good agreement with the theoretical ones at low and high frequencies. However, the higher the frequency of the processed signal, the greater the deviations.

The total power dissipation was 2.83 mW. Low power consumption of the proposed circuits occurs due to the application of low-voltage current mode and transconductance mode integrated circuits, along with the use of bipolar transistor technique. Applying the current mode signal processing to solve the issues under consideration is a sensible approach to the problem. However, similar and sometimes lower power consumption can be achieved using CMOS technology instead of the bipolar one.

To test the tunability of the gain of the proposed rectifier circuit, the bias current of the MO-CCCI (I_b) is changed and the results are shown in Fig. 10. For these simulations, the input signal is taken as a sinusoidal voltage signal with 100 kHz frequency and 50 mV peak value at a load of $R_L = 100 \Omega$.

4.1 Harmonic distortion

A further indication of the performance of each of the full-wave rectifiers can be gleaned by examining the distortion already present in a full-wave rectified signal. When a sinusoidal signal of frequency f is applied to a full-wave rectifier, the steady-state response at the output ideally consists of harmonic components at $2f$, $4f$, $6f$, etc. [2]. The harmonics in the signal cause the distortion in the output of the circuit. Because of its periodic nature, these harmonic components can be analyzed by the Fourier series (with fast Fourier transform using PSpice).

In the case of a full-wave rectifier, the steady-state response at the output consists of even harmonics. Fig. 11 shows the total harmonic distortion of the output voltage of the proposed circuit, Fig. 1. The THD of the proposed circuit is -15.6 dB at 50 Hz and -20.8 dB at 1
MHz with an input signal of 50 mV. The THD is significantly lower than in [2], [27], [28] (the THD of previously reported circuit slowly increases with frequency), because of higher frequency ranges, the diode switching ON and OFF tends to become sluggish due to its higher impedance and more distortions.

4.2 Comparison with the Existing Circuits

To gain a better insight into the technique proposed here, the performance of the proposed circuits was compared to the previous one implementing full-wave rectifiers. Table 2 summarizes this comparison by showing some important parameters of the rectifiers. It should be assumed here that not all of the comparison realizations rely on the concept of a voltage-mode circuit, as is the one proposed in this paper.

The proposed rectifier requires fewer active components than the one described in [2], [22], [25], [31], along with lower THD of the output voltage and lower consumption. Additionally, the circuit described in this paper enables electronic control of the gain of the proposed rectifier circuit (amplitude of the output voltage signal).

5 Conclusion

In this paper, new full-wave rectifier topologies are given. The circuit employs only two active components and one resistor operating in VM, which is advantageous from the integration point of view. The performance of the proposed circuits is demonstrated by PSpice simulations using the bipolar arrays ALA400 from AT&T technology parameters. The effects of the non-idealities of the active elements are also investigated. The proposed circuit has a high precision and linearity, low power consumption and wide bandwidth.

Table 2: Comparison of performance of different rectifiers

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Type of active building blocks used</th>
<th>Number of diodes</th>
<th>Number of resistors</th>
<th>Auxiliary bias sources</th>
<th>Maximum frequency</th>
<th>Maximum amplitude</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2]</td>
<td>4 CCCII, 3 MOS</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>20 MHz</td>
<td>±1 V</td>
<td>9.43 mW</td>
</tr>
<tr>
<td>[6]</td>
<td>1 CCCII, 2 MOS</td>
<td>-</td>
<td>1</td>
<td>no</td>
<td>100 kHz</td>
<td>±10 mV</td>
<td>-</td>
</tr>
<tr>
<td>[12]</td>
<td>2 CCCIs, 3 MOS</td>
<td>2</td>
<td>-</td>
<td>no</td>
<td>22 MHz</td>
<td>±50 mV</td>
<td>-</td>
</tr>
<tr>
<td>[13]</td>
<td>1 DXCCII, 3 MOS</td>
<td>-</td>
<td>1</td>
<td>no</td>
<td>10 MHz</td>
<td>±150 mV</td>
<td>3.33 mW</td>
</tr>
<tr>
<td>[14]</td>
<td>2 CCCIs</td>
<td>4</td>
<td>2</td>
<td>yes</td>
<td>no</td>
<td>10 kHz</td>
<td>3 V</td>
</tr>
<tr>
<td>[15]</td>
<td>1 CCCIs, 1 UVCs</td>
<td>2</td>
<td>-</td>
<td>no</td>
<td>500 kHz</td>
<td>±200 mA</td>
<td>1.19 mW</td>
</tr>
<tr>
<td>[16]</td>
<td>1 CCCIs, 1 UVCs</td>
<td>2</td>
<td>-</td>
<td>yes</td>
<td>1 MHz</td>
<td>±300 mA</td>
<td>-</td>
</tr>
<tr>
<td>[17]</td>
<td>1 CDTAs</td>
<td>4</td>
<td>1</td>
<td>no</td>
<td>10 MHz</td>
<td>±1 mA</td>
<td>-</td>
</tr>
<tr>
<td>[20]</td>
<td>1 CDTAs</td>
<td>2</td>
<td>1</td>
<td>no</td>
<td>Variable up to 42 MHz</td>
<td>±5 mA</td>
<td>-</td>
</tr>
<tr>
<td>[21]</td>
<td>1 DXCCIs</td>
<td>2</td>
<td>1</td>
<td>no</td>
<td>1 MHz</td>
<td>±500 mV</td>
<td>-</td>
</tr>
<tr>
<td>[22]</td>
<td>1 MZC - CDTA, 2 MOS</td>
<td>-</td>
<td>-</td>
<td>no</td>
<td>10 MHz</td>
<td>±300 mA</td>
<td>14 mW</td>
</tr>
<tr>
<td>[27]</td>
<td>3 OA, 3 AD633/AD</td>
<td>1</td>
<td>9</td>
<td>no</td>
<td>1 MHz</td>
<td>±5 V</td>
<td>-</td>
</tr>
<tr>
<td>[28]</td>
<td>3 CCCII</td>
<td>-</td>
<td>5</td>
<td>yes</td>
<td>5 MHz</td>
<td>±500 mV</td>
<td>-</td>
</tr>
<tr>
<td>[29]</td>
<td>1 OTA/1 DVCC</td>
<td>2</td>
<td>2/3</td>
<td>no</td>
<td>1 MHz</td>
<td>±200 mA</td>
<td>-</td>
</tr>
<tr>
<td>[30]</td>
<td>1 CDTA</td>
<td>4</td>
<td>-</td>
<td>yes</td>
<td>1 GHz</td>
<td>±210 µA</td>
<td>6.31 mW</td>
</tr>
<tr>
<td>[31]</td>
<td>1 CCCII, 1 DXCCII</td>
<td>2</td>
<td>2</td>
<td>no</td>
<td>1 MHz</td>
<td>±350 mV</td>
<td>-</td>
</tr>
<tr>
<td>[32]</td>
<td>47 MOS, 9 CS</td>
<td>-</td>
<td>1</td>
<td>no</td>
<td>100 MHz</td>
<td>±200 mV</td>
<td>5.2 mW</td>
</tr>
<tr>
<td>[33]</td>
<td>2 CCCII</td>
<td>2</td>
<td>3</td>
<td>yes</td>
<td>10 MHz</td>
<td>±1 V</td>
<td>-</td>
</tr>
<tr>
<td>This work</td>
<td>1 DOCCCIIs, ZCD, 2 MOS</td>
<td>-</td>
<td>1</td>
<td>no</td>
<td>10 MHz</td>
<td>±100 mV</td>
<td>2.83 mW</td>
</tr>
</tbody>
</table>

6 References

Arrived: 19. 08. 2016
Accepted: 28. 09. 2016