Subthreshold Modeling of Triple Material Gate-All-Around Junctionless Tunnel FET with Germanium and High-K Gate Dielectric Material

G. Lakshmi Priya1, N. B. Balamurugan2

1Jerusalem College of Engineering, Chennai, India
2Thiagarajar College of Engineering, Madurai, India

Abstract: In this paper, a subthreshold analytical model for Triple Material Gate-All-Around (TMGAA) Junctionless Tunnel FET (JLTFET) with Germanium and High-K gate dielectric material is developed. Various performance metrics like Transconductance-to-Drain Current ratio, Subthreshold leakage current, and Subthreshold Swing are derived to model the subthreshold behavior of the device. The gate structure incorporates the effect of Germanium (Ge) and High-K gate dielectric material (Titanium Oxide) to combat the adverse effects imposed by the short channel. The subthreshold characteristics of Ge based JLTFET is compared with Silicon (Si) based TFET with SiO2 as gate dielectric. The results conceded that the developed model is highly immune to hot carrier damage because of high transconductance-to-drain current ratio of 50 V-1, minimal leakage current, and subthreshold swing less than 40 mV/dec. The results of the proposed analytical model are validated using 2-D Sentaurus TCAD device simulator.

Keywords: Germanium; Junctionless; High-K gate dielectric; Hot Carrier Reliability; Tunnel FET; Transconductance-to-Drain Current ratio; Subthreshold Current; Subthreshold Swing.

1 Introduction

Aggressive downscaling of devices has almost reached a sub-nanometre regime, which deteriorates the gate control over the channel. Several novel device architectures have been introduced to suppress the Short Channel Effects (SCEs) [1]. For many technology generations, the gate electrode structures were made of silicon and silicon dioxide as gate dielectric material. As the channel length is reduced tremendously, other potential alternatives have to be explored to improve the subthreshold device characteristics [2 - 5]. Convention-
of the subthreshold leakage current and requires a very high gate voltage for TFET operation. Also, due to the continuous scaling of oxide thickness, the gate leakage current through the SiO₂ layer will be high. A potential candidate to continue FET scaling with improved subthreshold characteristics is Junctionless Tunnel FET (JLTFET) [6].

Junctionless FETs (JLFETs) have several advantages like diminished short channel effects, high \(I_{on}/I_{off} \) ratio and nearly ideal subthreshold slope (55 ~ 60 mV/dec). The concept of gate material engineering is also incorporated to overcome the adverse short channel effects. Many analytical models have been proposed for junctionless TFETs. Triple Material Gate-All-Around (TMGAA) structures employ three gate materials with different work functions.

The gate material engineering [7 – 8] suppresses the peak electric field at the drain side, which is interpreted as a continuous reduction of Hot Carrier Effects (HCEs). Along with this, the usage of Germanium and Titanium Oxide (TiO₂) as High-K gate dielectric material [9 – 14] will improve the hot carrier reliability of the proposed device. High-K gate dielectric materials will minimize the tunneling of electrons through the gate-oxide interface and hence gate leakage current will also be minimized.

Subthreshold Current/Swing plays a vital role in low power circuits [15 – 19]. The use of Ge-based TMGAA-JLTFETs will efficiently enhance the subthreshold characteristics of the device. Device scientists have disclosed numerous analytical models for subthreshold analysis of MOSFETs [20 – 24]. But the effectiveness of combined design of Germanium (Ge), High-K gate dielectric (Titanium Oxide – TiO₂), Gate-All-Around (GAA) structure and three region doping profile in the channel has not yet been explored in short channel (12nm) junctionless tunnel FETs. Therefore, in this research work, we have developed a subthreshold analytical model of 12nm Triple Material Gate-All-Around (TMGAA) Junctionless Tunnel FET (JLTFET) with Germanium and High-K gate dielectric material for improved hot carrier reliability. An intensive comparative study with Si-SiO₂ interface is also carried out and the analytical model results are also simulated using TCAD.

In this paper, subthreshold analytical modeling has been developed by solving the 2-D Poisson equation by parabolic approximation. The key performance parameters like transconductance-to-drain current ratio, subthreshold current and subthreshold swing are derived by varying the device parameters such as drain-to-source voltage, germanium thickness, oxide thickness, channel length, and doping concentration. The obtained analytical and simulation results manifests that this transistor possesses higher transconductance, lower leakage current and steeper subthreshold slope compared to the bulk silicon FETs. The proposed analytical model results are validated using TCAD Sentaurus device simulator.

2 Mathematical Modeling

The cross sectional view and structure of the 12nm Ge based Triple Material Gate-All-Around Junctionless Tunnel FET (Ge-TMGAA-JLTFET) is shown in Fig.1. In this structure, the gate electrode comprises of three materials M₁, M₂, and M₃ with different work functions. These three distinct materials are deposited over the respective gate lengths \(L_1, L_2, \) and \(L_3 \) with total gate length (12 nm) defined as \(L = L_1 + L_2 + L_3 \). The gate materials are chosen in such a way that \(\phi_{M1} > \phi_{M2} > \phi_{M3} \). The work function of tunneling gate metal \(M_i \) is \(\phi_{M1} = 4.8 \) eV (Au), gate material \(M_2 \) with \(\phi_{M2} = 4.6 \) eV (Mo), gate material \(M_3 \) at drain side is with \(\phi_{M3} = 4.4 \) eV (Ti). The proposed model has a 12nm germanium channel, which is heavily n-type doped at \(10^{19}\)cm⁻³. The formation of source and drain regions is without separate doping on the germanium channel.

![Cross section of 12nm Ge based Triple Material Gate-All-Around Junctionless Tunnel FET (Ge-TMGAA-JLTFET)](image)

Figure 1: Cross section of 12nm Ge based Triple Material Gate-All-Around Junctionless Tunnel FET (Ge-TMGAA-JLTFET)

The 2-D Poisson’s equation for the potential distribution in the channel is written as [4],

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi_i(r,z)}{\partial r} \right) + \frac{\partial^2 \phi_i(r,z)}{\partial z^2} = -\frac{qN_{D,i}}{\varepsilon_{Ge}} \quad i = 1,2,3 \tag{1}
\]

where \(\phi_i(r,z) \) is the 2-D channel potential profile, \(q \) is the electric charge, \(N_{D,i} \) is the channel doping concentration, which is assumed to be uniform and \(\varepsilon_{Ge} \) is the permittivity of germanium. The potential profile in the vertical direction can be related by a simple parabolic function given by,

\[
\phi(r,z) = S_1(z) + S_2(z)r + S_3(z)r^2 \tag{2}
\]
where $S_1(z)$, $S_2(z)$ and $S_3(z)$ are arbitrary functions of z only.

The Poisson’s equation is solved separately under the three gate metal regions by considering the boundary conditions stated below:

(a) The surface potential is a function of z only.
\[\phi(r = 0, z) = S_1(z) = \phi_s(z) \] (3)

(b) The electric field in the center of germanium pillar is zero.
\[\frac{\partial \phi(r, z)}{\partial z} \bigg|_{r=0} = 0 \] (4)

(c) The electric field at the gate oxide interface is continuous.
\[\frac{\partial \phi(r, z)}{\partial z} \bigg|_{r=R} = \frac{E_{ox}}{E_{Ge} R} \ln \left(\frac{\psi_G - \phi_s(z)}{1 + \frac{\mu_{ox}}{R}} \right) \] (5)

(d) The potential at the source end is:
\[\phi(r = 0, z = 0) = V_{hi} \] (6)

(e) The potential at the drain end is:
\[\phi(r = R, z = L = L_1 + L_2 + L_3) = V_{hi} + V_{di} \] (7)

where, $\psi_G = V_{GS} - \phi_{M_i} + \chi + \frac{E_{Ge}}{2} ; i = 1,2,3$ (8)

V_{gs} is the gate to source bias, E_G is the energy band gap of germanium, χ is the electron affinity of germanium, ϕ_{M_i} is the gate metal work function of three different materials and V_{hi} is the built-in potential.

In germanium based TMGAA-JLTFETs, we have three different gate materials with different work functions. Hence, the flat-band voltage for the three gate metal regions can be written as:
\[V_{fb} = \phi_{M_i} - \phi_{Ge} \quad V_{fb} = \phi_{M_2} - \phi_{Ge} \quad V_{fb} = \phi_{M_3} - \phi_{Ge} \] (9)

Where ϕ_{M_i} and ϕ_{M_2} and ϕ_{M_3} denote the work functions of three different gate materials and ϕ_{Ge} is the work function of germanium.

Using the boundary conditions (3 – 7), we get the potential distribution under each gate metal region as;
\[\phi_{s1}(z) = P_e^{1/2} + Q_e^{1/2} - \frac{\phi_s}{\lambda^2}; \quad \text{for } 0 \leq z \leq L_1 \] (10)
\[\phi_{s2}(z) = P_e^{1/2} + Q_e^{1/2} - \frac{\phi_s}{\lambda^2}; \quad \text{for } L_1 \leq z \leq L_1 + L_2 \] (11)
\[\phi_{s3}(z) = P_e^{1/2} + Q_e^{1/2} + \phi_s - \frac{\phi_s}{\lambda^2}; \quad \text{for } L_1 + L_2 \leq z \leq L_1 + L_2 + L_3 \] (12)

where the constants P and Q shown in (10 – 12) are obtained from the boundary conditions (3 - 7)
\[P_i = \frac{1}{(e^{\mu_{ox}} - e^{-\mu_{ox}})} \left[V_{hi}(1 - e^{-\mu_{ox}}) + \phi_s(1 - e^{-\mu_{ox}}) + V_{di} \right] ; i = 1,2,3 \] (13)
\[Q_i = \frac{1}{(e^{\mu_{ox}} - e^{-\mu_{ox}})} \left[V_{hi}(e^{\mu_{ox}} - 1) + \phi_s(e^{\mu_{ox}} - 1) - V_{di} \right] ; i = 1,2,3 \] (14)

The minimum surface potential under the gate metal region M_i is given by:
\[\frac{d\phi_{s1}(z)}{dz} \bigg|_{z = z_{min}} = 0 \] (15)
\[\phi_{s1}(z_{min}) = 2\sqrt{P_i Q_i - \phi_s^2} \] (16)

\[\phi_{s2}(z_{min}) = \frac{\psi_G}{\lambda^2} \] (17)

where, $\lambda^2 = \frac{2E_{ox}}{E_{Ge} R \ln (1 + \frac{\mu_{ox}}{R})}$ and
\[z_{min} = \frac{1}{2\lambda} \ln \left(\frac{Q_i}{P_i} \right) \]

2.1 Transconductance-to-Drain Current Ratio

The Transconductance-to-Drain Current ratio is strongly related to the performance measure of a device. This is obtained by differentiating the minimum surface potential with respect to gate-to-source voltage and it is given by [23],
\[g_m = \frac{\partial \phi_s}{\partial V_{gs}} \bigg|_{z_{min}} = \frac{V_{gs}}{K_s F} \] (18)
where K_B denotes Boltzmann constant = 1.38×10^{-23} and T is the Temperature.

On substituting (16) in (18), we get the Transconductance-to-Drain Current ratio as,

$$\frac{g_m}{I_{ds}} = -\frac{q}{K_BT\alpha}\left[\sqrt{2(\beta - 1)}\left(1 + \frac{1}{2\sqrt{V_{ds}}}\right)\right]$$

where $\alpha = (e^\lambda - e^{-\lambda})/2$ and $\beta = -(e^{2\lambda} - e^{-2\lambda})/2$

2.2 Subthreshold Current

In order to reduce the low power consumption, the supply voltage has been scaled down aggressively, which has driven attention towards the subthreshold leakage current. Hence, current in this subthreshold region has to be determined to assess the performance and reliability of the device.

The net current density in a semiconductor device can be defined as the total sum of drift and diffusion current densities. For Junctionless TFETs, the doping profile is uniform throughout the channel and because of the absence of concentration gradient, diffusion current density is neglected.

Hence, the total current density of Ge-TMGAA-JLTFET is written as,

$$J(r, z) = -q\mu n(z)E(z)$$

where $E(z)$, is the applied electric field along the position of the channel (z).

In general, there are two electric field components which depends on both r and z. The electric field component along the channel is lateral electric field $E(z)$ and the electric field component perpendicular to the channel is vertical electric field $E(r)$. While analyzing the subthreshold current of the device, only $E(z)$ is considered. Since, electron transport velocity along the channel can only be determined by the lateral electric field component (i.e. $E(z)$), which is obtained as follows,

$$E(z) = \frac{d\phi(r, z)}{dz} = \left[\frac{\lambda}{\sinh(\lambda L)}\right] + \left[V_{bi}\left[Cosh(\lambda z) - Cosh(\lambda z - L)\right]\right]
+ \left[\frac{\phi_{bi}}{\lambda^2}\left[Cosh(\lambda z) - Cosh(\lambda z - L)\right]\right] + V_{ds}\left[Cosh(\lambda z)\right]$$

By integrating (20), the subthreshold current is expressed as:

$$I_{ds}(z) = -\frac{q}{\phi_0}\mu n(z)\exp\left[\frac{q}{K_BT}\left(\phi(r, z)\right)\right]\left[\frac{\lambda}{\sinh(\lambda L)}\right]$$

$$+ \left[V_{bi}\left[Cosh(\lambda z) - Cosh(\lambda z - L)\right]\right]
+ \left[\frac{\phi_{bi}}{\lambda^2}\left[Cosh(\lambda z) - Cosh(\lambda z - L)\right]\right] + V_{ds}\left[Cosh(\lambda z)\right]$$

2.3. Subthreshold Swing

Subthreshold swing normally describes the exponential behaviour of leakage current. For devices requiring high speed and low power, the subthreshold swing should be minimized. With steep subthreshold swing, improved I_{ON}/I_{OFF} ratio can be obtained and device reliability can be enhanced. Subthreshold slope is defined as the change in gate voltage required to reduce the subthreshold current by one decade. Subthreshold swing is the inverse of subthreshold slope.
Subthreshold swing is given as [24],
\[SS = \left(\frac{\partial \log I_{DS}}{\partial V_{GS}} \right)^{-1} \]
(24)

After approximation we obtain;
\[SS = \frac{K_g T}{q} \ln(10) \frac{\partial \phi_{s,\min}}{\partial V_{gs}} \]
(25)

where,
\[\frac{\partial \phi_{s,\min}}{\partial V_{gs}} = \frac{\partial}{\partial V_{gs}} \left\{ \left[V_{bi} + \frac{\phi_{gs}}{\lambda_g} \right] \sqrt{2(\beta - 1)} - V_{ds} + \left[V_{ds} \sqrt{2(\beta - 1)} \left(V_{bi} + \frac{\phi_{gs}}{\lambda_g} \right) \right] + \frac{qN_{d0}}{\varepsilon_{Ge}} + \lambda^2 (V_{GS} - V_{FB}) \right\} \]
(26)

On substituting (26) in (25) and on simplification, the final expression of subthreshold swing is obtained as,
\[SS = \frac{K_g T}{q} \ln(10) \left[\frac{-1}{\alpha} \sqrt{2(\beta - 1)} \left[1 + \frac{1}{2\sqrt{V_{GS}}} \right] \right]^{-1} \]
(27)

3 Results and Discussions

The proposed analytical model is verified using a 2-D TCAD device simulator. With uniformly n-type doped (N_d=10^{19} \text{cm}^{-3}) source, drain and channel regions, a germanium based TMGAA Junctionless TFET structure is implemented. The developed model has a triple material gate-all-around structure, where the work functions of gate metals M1, M2 and M3 are chosen to be 4.8eV, 4.6eV, and 4.4eV respectively. The analytical model results are plotted using MATLAB and compared with the TCAD device simulator results. Drift Diffusion (DD) model has been employed to model the carrier transport mechanism in device simulation. Also, to model the carrier concentration, Shockley-Read-Hall (SRH) recombination model combined with Auger recombination model are used in the simulation.

The total channel length of the proposed device is chosen to be 12nm. The remaining device parameters used are: channel thickness (t_{ox}) is 2nm, gate-oxide thickness (t_{sox}) is 1nm and V_{ds} = 0.3V. The length of the three gate metal regions is: \(L_1 = L_2 = L_3 = 4\text{nm} \).

The transconductance-to-drain current ratio of 12nm germanium and silicon based triple material gate-all-around junctionless tunnel FET is shown in Fig.2. The results clearly indicate that the developed Ge based TMGAA-JLTFET has higher value of transconductance-to-drain current ratio of nearly 50\text{V}^{-1}. However, in silicon based JLTFETs with SiO_2 as gate dielectric material, the ratio is 35\text{V}^{-1}, which is less when compared to the proposed germanium based device. This implies that Ge-TMGAA-JLTFETs are profoundly insusceptible to Hot Carrier Effects (HCEs). Such a model with a high value of \(g_m/I_{ds} \) ratio is strongly desired for high-efficiency photovoltaic cell applications. Thus, the anticipated analytical results of the proposed model are validated against TCAD device simulation results.

The variation of transconductance-to-drain current ratio along the channel length is plotted for different values of High-K gate dielectric materials in Fig.3. As the channel length increases, \(g_m/I_{ds} \) ratio also increases. The term ‘K’ denotes the relative permittivity of the gate oxide material. Materials with high relative permittivity are useful in manufacturing high-value capacitors, high power RF transmitters and some electro-optical appliances. With higher relative permittivity of Titanium Oxide (TiO_2), the \(g_m/I_{ds} \) ratio is increased. The use of high-K gate dielectric material over conventional gate dielectric material (Silicon dioxide – SiO_2), has offered augmented carrier generation efficiency in the channel region. Thus, the projected model with germanium.

Figure 2: Transconductance-to-Drain Current ratio of Ge-TMGAA-JLTFET and Si-TMGAA-JLTFET with L=12nm, \(t_{ox} =2\text{nm} \) and \(t_{sox} =4\text{nm} \).
and high-K gate dielectric material has significantly contributed to the performance of the device.

From Fig.2, we have noticed the combined supremacy of germanium and titanium oxide in proliferating the transconductance-to-drain current ratio. Here in Fig.4, also, it is clearly witnessed that the characteristics of the proposed device are better than in conventional Si-SiO$_2$ based devices. Fig.4. depicts the g_m/I_d variation of Ge versus Si based TMGAA-JLTFET for various values of oxide thickness $t_{ox}=1, 2$nm. For thinner oxide thickness of $t_{ox}=1$nm, the g_m/I_d ratio is high for both devices. But, the overall ratio is much higher for Ge-TMGAA-JLTFET, which again proves to be pertinent for high-efficiency, low power solar cell applications.

Fig.5. (a) illustrates the variation of subthreshold current for Ge and Si based TMGAA-JLTFET for various values of $V_{ds}=0.3V$ and $0.4V$. It is shown that in the proposed device the subthreshold leakage current is minimized when compared to Si-SiO$_2$ based junctionless TFETs. With Si-SiO$_2$ interface, several unwanted side effects can occur, remarkably the Hot Carrier Effect (HCE), which causes a displacement in the threshold voltage value and consequently leads to subthreshold leakage. For $V_{ds}=0.3V$, the subthreshold leakage is smaller compared to $V_{ds}=0.4V$. Also, when the gate voltage equals the drain voltage, the hot carrier injection is at maximum.

For higher drain voltages, the peak electric field will be at the drain end. The high electric field leads to avalanche multiplication of carriers. These carriers in turn gain high energy and become "Hot" electrons. The hot carriers can easily get trapped into the oxide layer and cause severe reliability issues. But with the incorporation of three different doping profiles in the gate region, the peak electric field at the drain side is suppressed effectively, shown in Fig.5.(b).

Hot carrier damage may affect the endurance of non-volatile memory. Hot Carrier Effect (HCE) refers to device degradation or instability caused by hot carrier injection. This HCE being an important factor in the small-scale integrated circuits has to be reduced with-
out negotiating the advancements in device scaling. Hence, our proposed model (Ge-TMGAA-JLTFET) has overcome this hot carrier degradation with the usage of Titanium Oxide (TiO$_2$) as gate dielectric material. Fig.6. depicts the variation of subthreshold current for various channel lengths, L=15nm, 30nm and 45nm. Short channel (12nm) device using High-K dielectric material, offers improved hot carrier reliability, which is endorsed by minimum subthreshold leakage current of 10^{-25}A/µm near the subthreshold regime.

Figure 6: Subthreshold Current variation of Ge and Si based TMGAA-JLTFET for different channel lengths of L=15nm, 30nm and 45nm.

The plot of subthreshold swing along the channel length for various values of germanium thickness is shown in Fig.7. The proposed analytical model results are compared with Si based TMGAA-JLTFET and simulated using TCAD device simulator. It is inferred that the subthreshold swing has attained a minimum value of 35mV/dec, when compared to Si based JLTFETs having subthreshold swing less than 50mV/dec. With minimum germanium film thickness, the subthreshold degradation is also minimal.

Figure 7: Dependence of Subthreshold Swing of Ge and Si based TMGAA-JLTFET along the channel lengths for various values of germanium thickness.

Fig.8. illustrates the dependence of subthreshold swing of Ge-TMGAA-JLTFET for various values of oxide thickness. As the oxide thickness is reduced from 3nm to 1nm, we witness that the subthreshold swing is also reduced to a greater extent. This demonstrates that, with thinner gate oxide, the electric field component can pervade the channel region more easily. Once the electric field components are strong enough, the gate controlling capability is reinforced and subthreshold degradation in minimized. With lightly doped drain structure, the peak electric field at the drain end is suppressed and hence Drain Induced Barrier Lowering (DIBL) effect is also reduced tremendously.

Figure 8: Plot of Subthreshold Swing of Ge-TMGAA-JLTFET along the channel lengths for various values of oxide thickness.

Fig.9. depicts the subthreshold swing of Ge-TMGAA-JLTFET for various values of doping concentration. For junctionless TFETs, the doping profile is uniform throughout the device. With higher doping concentration of $N_d=10^{20}$cm$^{-3}$, it is inferred that the subthreshold degradation is reduced.

Figure 9: Subthreshold Swing of Ge-TMGAA-JLTFET along the channel lengths for various values of doping concentration.
Figure 10: Plot of Subthreshold Swing of Ge-TMGAA-JLTFET along the channel lengths for different types of High-K gate dielectric materials.

The dependence of subthreshold swing of Ge-TMGAA-JLTFET for various types of High-K gate dielectric materials is shown in Fig.10. The subthreshold swing of the proposed model has been evaluated for various high-K gate dielectric materials such as Yttrium oxide, Hafnium/Zirconium oxide, Lanthanum oxide and Titanium oxide. The values of Transconductance-to-Drain Current ratio and Subthreshold Swing of Ge-TMGAA-JLTFET for different types of High-K gate dielectric material are listed in Table.1. The first row of Table.1 clearly indicates that, among different High-K materials, Titanium oxide offers less subthreshold swing and high g_m/I_{ds} ratio. It is visualized from Fig.10 that, Titanium oxide with higher dielectric constant, can hold large number of charge carriers and subthreshold degradation of the device is also reduced. The precise results of Ge and Si based TMGAA-JLTFET are listed in Table.2. The results suggest that the proposed model incorporated with Germanium, Titanium oxide and three different gate materials such as Gold, Molybdenum, and Titanium is a good solution and also as an excellent candidate for Improved Hot Carrier reliability.

4 Conclusions

In this paper, a subthreshold model of 12nm triple material gate-all-around junctionless tunnel FET with germanium and titanium oxide as high-K gate dielectric material is developed. The enhanced subthreshold characteristics of this novel device have been verified and validated by comparing the results with Si-SiO$_2$ based JLTFETs. Transconductance-to-Drain Current ratio, Subthreshold Current and Subthreshold Swing are derived analytically and simulated using the 2-D Sentaurus TCAD device simulator for various device parameters. Good agreement is obtained between our proposed analytical model and obtained simulation results. The results concede that Ge-TMGAA-JLTFET with TiO$_2$ exhibits improved hot carrier reliability with higher g_m/I_{ds} ratio, low leakage current and steep subthreshold swing. The proposed model proves to be an excellent device for high-efficiency photovoltaic cells, solar cell applications and solid-state LEDs.

5 References

Table 1: Transconductance-to-Drain Current ratio and Subthreshold Swing for Ge-TMGAA-JLTFET for different types of High-K gate dielectric material

<table>
<thead>
<tr>
<th>High-K gate dielectric materials</th>
<th>Dielectric Constant (K)</th>
<th>Ge-TMGAA-JLTFET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Transconductance-to-Drain Current ratio (V')</td>
</tr>
<tr>
<td>Titanium Oxide, TiO$_2$</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>Lanthanum Oxide, La$_2$O$_3$</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Hafnium/Zirconium Oxide, HfO$_2$/ZrO$_2$</td>
<td>25</td>
<td>43</td>
</tr>
<tr>
<td>Yttrium Oxide, Y$_2$O$_3$</td>
<td>15</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 2: Subthreshold parameters of Ge and Si-TMGAA-JLTFET with Titanium Oxide as gate dielectric material

<table>
<thead>
<tr>
<th>Subthreshold Parameters</th>
<th>Device Type (L = 12nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ge – TMGAA-JLTFET</td>
</tr>
<tr>
<td>Transconductance-to-Drain Current Ratio</td>
<td>49V'</td>
</tr>
<tr>
<td>Subthreshold Current with Vgs = -0.1V</td>
<td>10 - 25A/µm</td>
</tr>
<tr>
<td>Subthreshold Swing</td>
<td><35mV/dec</td>
</tr>
</tbody>
</table>

Arrived: 16. 10. 2017
Accepted: 27. 03. 2018