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Abstract: The failure rate assessment of online metering equipment is significant for power metering. For traditional methods, 
the performance of the model is not satisfactory especially in the case of small samples. In this paper, an online power measuring 
equipment fault evaluation method based on Weibull parameter hierarchical Bayesian model is proposed. Firstly, the z-score method 
is used to eliminate outliers in the raw failure data. Then, a generalized linear function with variable intercept is established according 
to the characteristics of failure data. The information of each region is merged using the characteristics of multi-layer Bayesian 
network uncertainty reasoning. The model parameters are updated based on the Markov chain Monte Carlo method. Thereafter, the 
trend of failure rate is provided with time-dependent. Finally, the proposed method is verified by the failure samples of the online 
measurement equipment in three typical environmental areas. The accuracy and validity of the hierarchical Bayesian model is verified 
by a series of experiments.
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Napovedovanje izpada na opremi merjenja moči 
na osnovi hierarhične Bayesianove mreže
Izvleček: Ocena stopnje izpada na merilni opremi moči je zelo pomembna. Pri klasičnih metodah je učinkovitost ni zadostna, kar se 
pokaže predvsem pri majhnih vzorcih. V pripsevku je predlagana metoda napovedi izpadov merilne opreme na osnovi Wibullovega 
parametra hierarhičnega Bayesianovega modela. Najprej so iz surovih podatkov odstranjeni neuporabni podatki na osnovi metode 
z-ocene. Informacija je nato združena z uporabo karakteristik večslojne Bayesianove mreže in nadgrajena z Markovo verigo po Monte 
Carlo metodi. Trendi so časovno odvisni. Rezultati so preverjeni in ovrednoteni z meritvami v treh tipičnih okoljih. 
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1 Introduction

Energy metering equipment, such as electric meters 
and collectors, have a large amount and wide distri-
bution in the power grid. As the nerve endings of the 
smart grid, electricity meters play an irreplaceable role 
in electricity information collection and energy moni-
toring [1]. Meanwhile, the reliability of the metering 
equipment is also related to the safety of household 
electricity consumption. Inaccurate energy metering 
affects the strategic planning of power generation, 

transmission and use of electricity [2]. The failure rate 
evaluation of the metering device over time and the 
fault are limited because it is difficult to collect large 
amounts of sample information. Therefore, it is of great 
significant to establish a scientific and reliability evalu-
ation scheme for the reliability design of metering 
equipment.

In recent decades, a large number of methods are ap-
plied to target prediction and fault analysis. Generally, 
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these methods can be classified into two categories, 
namely deterministic method and probability method 
[3]. The Support Vector Regression (SVR) model is em-
ployed to identify fault and predict the remaining life 
of the reciprocating compressors based on the sensory 
data [4]. In addition, accurate bearing remaining use-
ful life of machine’s breakdown and maintenance’s cost 
is proposed based on the artificial neural network [5]. 
These algorithms and methods achieve high precision 
prediction. However, enough samples are required to 
train the models before the effective prediction results 
is given. Moreover, the data is relatively simple, which 
limits its accuracy. The Principal Component Analysis 
(PCA) is utilized to select fault-relevant variable [6], so 
that a subset of variables based on training and valida-
tion data sets can be obtained to achieve better pos-
sible performance [7]. But this method has an unsatis-
factory performance, especially in the absence of prior 
information. Consequently, the deterministic method 
lacks probability information for uncertain problems.

Probabilistic methods, one that can detect uncertainty 
in the data and provide more information, often used 
for failure analysis [8]. Fault Tree Analysis (FTA) is one of 
the most commonly used probabilistic methods. A sys-
tem level electric field exposure assessment by FTA is 
proposed in [9]. However, the detailed system structure 
is needed for fault tree analysis. The Gaussian Process 
(GP) is another method for probability analysis [10]. The 
remaining useful life prediction for service units is used 
to improve the accuracy [11]. But the unexplained na-
ture of this nonparametric model limits its application. 
Then, the Bayesian estimation is widely used in failure 
rate analysis [14]. For example, a Bayesian method is 
proposed for the hazard rate analysis of electronic de-
vices [15]. Moreover, the fuzzy evidence theory, can be 
combined with Bayesian to solve the problem of insuf-
ficient samples [12][13]. Intuitively, probability method 
can provide more information, such as confidence in-
terval and quantile, and is more suitable for the pro-
cessing of small sample data.

To achieve failure rate analysis of online metering 
equipment, a Hierarchical Bayesian Network (HBN) is 
proposed based on a small number of electrical meters 
fault samples. A segmented Weibull parameter model 
is introduced for failure rate analysis at different times 
to better fit the data. Considering the different envi-
ronments in different regions, part of the information 
fusion method is used in measurement equipment. 
Moreover, the real fault samples in three typical envi-
ronments are used to verify the validity of HBN. The 
reliability of the metering device is calculated, and the 
parameters of the model are interpretable compared 
to traditional FTA and GP models.

The remaining part of this paper is organized as fol-
lows: Section II describes the outlier detection meth-
od in sample data. The proposed Weibull hierarchical 
Bayesian model is presented in Section III. Thereafter, 
the fault data of electrical meters in different regions 
is analyzed in Section IV. Finally, the conclusion is pre-
sented in Section V.

2 Failure rate data outlier detection

In the actual process of data collection, abnormal val-
ues may exist in the raw failure rate data due to the 
operational errors of researchers. The outliers not only 
affect the model’s evaluation of the power metering 
equipment reliability, but also easily cause the model 
to be overfitting [16]. Traditional failure assessment 
methods are difficult to balance in small sample, failure 
rate data with missing data and outliers.

In order to clean up the abnormal value of the raw fail-
ure rate data and reduce the information loss, the Z-
score method is used to clean the outliers in the fault 
rate data. The Z-score method determines the outliers 
by solving the relative standard distance of the data 
from the mean, which is suitable for the outlier detec-
tion under small samples.

Let Y={ys,t,j}, where ys,t,j denotes the fault rate of the 
measuring device measured in the jth time, t=1,...,L, j=1 
,...,N, and in the s area at the measurement time t. The 
standard deviation σt of the failure rate data for each 
measurement is:

 ( )2
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where N is the total number of failure rate data when 
the measurement time is t, us,t,j is the average of the fail-
ure rate data for each measurement and ys,t,j denotes 
the fault rate of the measuring device measured in the 
jth time. Considering the discontinuity of the sample 
data and reducing the loss of valid data, a window of 
length three is used to analyze the outliers in failure 
rate data, and the window is composed of three meas-
urements of [t, t+1, t+2]. That is, the standard deviation 
of three consecutive measurements is calculated each 
time, and the Z score Zj of each data point ys,t,j is calcu-
lated as

 , , , ,= s t j s t j
j

t
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     (2)

where u’
s,t,j are the mean failure rate of three consecu-

tive measurements, σ’
t is the standard deviation of us,t,j= 
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u’
s,t,j in equation (1), at which point Zj can be regarded 

as obeying the normal distribution N(0, 1). Finally, the 
threshold for determining the abnormal data is set to 
three times the standard deviation of N(0, 1). The outli-
ers of the original failure rate data with the score |Zj| 
greater than the threshold is replaced by the mean u’

s,t,j. 
Then the failure rate data Y*= { y*

s,t,j } without the outlier 
is obtained.

3 Weibull parameter model for 
metering equipment failure rate

3.1 Other Recommendations

The commonly used online power metering equip-
ment includes electrical meters, power quality detect-
ing devices and concentrators, etc. This paper takes the 
electrical meter as the target to analyze. The electric 
energy metering equipment is a high-precision meas-
uring instrument. The damage of the weakest link of 
the system will directly lead to the failure of the meas-
uring equipment. The Weibull distribution is used as 
the fault description of the commonly used electronic 
instruments [17], so the Weibull distribution is used to 
fit the electric energy meter data, the probability den-
sity function of Weibull is

 1( | , , ) ( ) exp[ ( ) ]
0, 0, 0, 0

f t t t
t

α αλ α χ λα χ λ χ
λ α χ

−= − − −
> > > ≥

 (3)

where t is the fault time, λ is the scale parameter, α is 
the shape parameter, and χ is the location parameter. 
We set χ to 0 considering that the failure starts after 
t=0. Then the χ is reduced to a two-parameter Weibull 
distribution. When the Weibull distribution probability 
density function f(t) is integrated, the value is always 
not less than 0, which is consistent with the condition 
that the number of failures is not less than 0.

The observed data Y* obeys the Weibull regression 
model, which can be expressed as

 ~ Weibull( , )λ α∗Y     (4)

Generally, the change of the shape parameter α indi-
cates that the failure mechanism changes. Therefore, 
the shape parameter α is set to obey the fixed distribu-
tion function. At this time, the regression model can be 
established by changing the scale parameter λ in the 
Weibull regression model.

When the observed data Y* is the metering device fault 
data, the fault number Y* will change according to the 
time variable x. Therefore, Weibull distribution function 

will change, and a regression model can be established 
based on λ

 
0 1 1= + = k kx xλ β β β+ + Tx β�    (5)

where βk is the regression coefficient, xk is the covariate. 
Considering the condition that the scale parameter λ is 
greater than 0, the value of the regression coefficient is 
limited. To select a wider distribution parameter as the 
prior distribution of βk, the log() correlation function is 
used to limit the range

 log( )= iwλ +Tx β      (6)

where wi is the measurement error when measuring 
the number of failures Y*, i is the number of sub-sample 
categories divided by the HBN model based on the to-
tal sample information. The log(λ) range becomes (−∞, 
+∞), and λ is inversely solved from equation (4).

 =exp( )iwλ +Tx β     (7)

At this time, there is no limit to the prior distribution of 
βk. When the covariate changes to ∆x, the contribution 
to the scale factor becomes exp(∆xβ).

3.2 Structure of Hierarchical Bayesian Model 

In order to realize the failure rate evaluation and pre-
diction of the measuring equipment, Bayesian net-
works (BN) are used to fuse data from different regions. 
BN takes full advantage of early prior information and 
sample data information to achieve a full estimate of 
the latest events [18]. In particular, HBN takes advan-
tage of information between levels to provide better 
data fitting capabilities [19].

For BN, the posterior probability density based on prior 
parameters θ is

 ( ) ( | ) ( )|
( | ) ( )d
f pp
f p

θ θθ
θ θ θ

∗
∗

∗
=

∫
YY
Y

   (8)

where f(Y* | θ) is the likelihood function of the Bayes-
ian model, p(θ) is the model prior distribution. The HBN 
model refers to the different levels of data parameters 
elaborated by other layer parameters, which specifies 
another layer of prior knowledge for a layer of param-
eters.

The denominator in equation (8) is independent of the 
parameter θ. When the Weibull distribution is used as 
the likelihood function of the model, the parameter 
posterior distribution is proportional to the numerator 
of (8), and it can be further expressed as

 ( | ) ( | ) ( | , , )ip f t p wθ θ θ α∗ ∝Y β    (9)
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where p(θ|α, β, wi) represents the prior distribution of 
the parameters α, β, wi .

In the Weibull distribution, the size of the parameter 
α determines the increase and decrease of the failure 
rate. When α>1, it indicates that the instrument is in 
the wear stage. And when α<1, which is suitable for the 
early failure stage of the instrument. Therefore, the pa-
rameter prior selection must meet certain conditions.

In the absence of any prior information α, according to 
the influence of α on the shape of Weibull distribution, 
the prior distribution f can be obtained by the HalfCau-
chy distribution.

 ( | ) ( | ) ( | , , )ip f t p wθ θ θ α∗ ∝Y β                  (10)

where b is the scale parameter of the distribution, and 
equation (10) can be abbreviated as HalfCauchy(b).

For the regression coefficient β, the setting of the log 
correlation function avoids limiting the range of coef-
ficient values, and the prior distribution f of the regres-
sion coefficient β can be set to normal distribution, 
which can be defined as

 
( )2( , | ) exp

2π 2
f u t t uτ ττ  = − − 

 
                (11)

where u is the normal distribution mean, 1/τ is the dis-
tribution variance. The measurement error wi value is 
small, so the prior distribution of wi may take a normal 
distribution with a small variance as well as the mean u 
= 0, and equation (11) can be abbreviated as N(u, 1/τ).

Substituting equation (10) and (11) into (7), the joint 
prior distribution of the parameters λ and α can be cal-
culated as
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Similarly, substituting equation (12) and (3) into (9), the 
joint posterior distribution λ and α can be expressed as

 1
2
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Tx βY                 (13)

Then the posterior distributions of the parameters λ 
and α in the hierarchical Bayesian model are
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After the parameter posterior distribution is obtained, 
the influence of the variation of the covariate x on the 
failure rate of the model can be reflected by the param-
eter mean value and the confidence interval.
When the new covariate x changes to z, the fault value 
can be calculated based on the existing fault number 
Y*, and the posterior distribution of the parameter is

 ( )| ( | ) ( | )dp f pθ θ θ∗ ∗= ∑∑z Y z Y                (16)

3.3 Failure rate Prediction of Metering Equipment

When the equipment fails, the rate of failure change 
does not always obey the fixed distribution. At this 
time, the regression coefficient β can be segmented 
according to the trend of failures number x. Then β can 
be expressed as

 1 1

2 2

( )   
~

( )  
N u x
N u x

τ σ
τ σ

<
 ≥

β
, 1/ ,
, 1/ ,

                  (17)

where σ is the time node at which the failure rate 
changes. Since only the trend of data can be observed, 
the failure rate change node cannot accurately speci-
fied. Thus, no information can be specified on the prior 
distribution σ

 
1 2

1( )f σ
η η
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−

                   (18)

where η1 and η2 are upper and lower limits of the den-
sity function. The regression model after segmentation 
can better follow the change of the failure rate of the 
metering equipment.

4 Fault analysis of metering equipment

4.1 Failure Data of Electrical Meters

In order to verify the effect of HBN model on the failure 
rate of metering equipment in different provinces, we 
analyze partial fault samples of Electrical Meters pro-
duced by the same company in Xizang (XZ), Xinjiang 
(XJ) and Heilongjiang (HLJ) province in the period of 
2012-2017.

The fault data is collected from multiple locations, as 
shown in Fig. 1. The operating status of the electrical 
meter is transmitted to the concentrator via the power 
line carrier. Then the failure data in different areas are 

D. Cheng et all; Informacije Midem, Vol. 49, No. 2(2019), 91 – 100



95

transmitted to the base station through GPRS. Particu-
larly, Fig. 1 demonstrates an example of an electricity 
meter with a measure fault. In this way, the number of 
electrical meter faults in different regions can be statis-
tically analyzed in real time.

Figure 1: The fault data acquisition framework of the 
measuring equipment

Fig. 2-4 show the failure rates of the three areas, respec-
tively. From the Fig. 2-4, it can be seen that there are 
seven groups of data in XZ and XJ, six groups in HLJ. 
All data are extracted independently, and each set of 
data contains six data points for the period 2012-2017. 
The failure rate is calculated by dividing the number of 
failures of the electrical meters by the total operation 
of the metering equipment each year.

Figure 2: The electrical meters failure rate curve of XZ

As we can see from Fig. 2 and 3, the failure rate in-
creased in the first five years and decreased in the sixth 
year and the failure rate of XZ is slightly higher than XJ. 
Fig. 2-4 show that the failure rate of metering equip-
ment varies in different provinces. Therefore, through 
modeling and analysis of this example, the reliability 
variation relationship of metering equipment in dif-
ferent provinces can be found and the accurate pre-
diction results is given. In addition, the data of 2014 in 

Fig. 3 and one point in 2013 in Fig.4 are too large to be 
outliers.

Figure 4: The electrical Meters failure rate curve of HLJ

The model analysis software uses the simulation plat-
form based on Pycharm. Moreover, the Pymc3 based 
on Python is used to analyze the collected data [20].

4.2 Model structure and experimental steps

The structure of the hierarchical Bayesian model for the 
failure rate of online power metering equipment is as 
follows:

First floor:

 ~ Weibull( , )Y λ α                   (19)

 ( )exp i x ix wλ β β= + +                   (20)

 ~ HalfCauchyα ( 10)                   (21)

Second floor:

 5~ 0,10i Nβ                    (22)
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Figure 3: The electrical meters failure rate curve of XJ
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According to the data of three provinces, the intercept 
i of formula (20) is set to 3 to reflect the difference of 
fault data of metering equipment in the three provinc-
es. The covariant x takes one term, and the regression 
coefficient βx of the three provinces is set to the same 
value to reflect the commonness of the products pro-
duced by the same company. According to the change 
of data, the failure rate change node σ can be set be-
tween 3-6 years, that is, the period of fault change 
fluctuation is 2014-2017. The flow chart of algorithm 
experiment is shown in Fig. 5. 

According to flowchart Fig. 5, in order to accurately 
analyze the occurrence of faults in the three provinces, 
the algorithm flow can be summarized into the follow-
ing four steps:
- Data preprocessing: The failure number of electri-

cal meters is transformed into the failure rate. Dif-
ferent environmental characteristics are normal-
ized to reduce the impact of units.

- Model establishment: Establish fault prediction 
model based on HBN. Then a priori distribution 
of model parameters is specified in conjunction 
with no information prior. 

- Model solving: Combined simulation platform 
Pymc3, the MCMC posterior sampling method 
is used to get the target optimization param-
eter [21]. We use the NUTS sampling method to 
achieve fast convergence, where the HBN model 
sampling iterations are set to 10000, and the pre-
firing period is set to 2000.

- Model verification: If the acceptance probability 
does not match the target, we than increase the 
number of samples or adjust the model prior dis-
tribution until it satisfies the acceptance probabil-
ity.

In the process of establishing Markov chain by using 
MCMC sampling method to solve the Model, NUTS 
sampling has good effect on high-dimensional and 
long data, avoiding the influence of step size on sam-
pling robustness and converges faster than Gibbs sam-
pling method. Therefore, NUTS algorithm is used to 
sample the model to achieve fast convergence [22][23].

Figure 5: The experimental flowchart of HBN model 
algorithm

In order to verify the accuracy of the model, after solv-
ing the parameters of the prior distribution, the likeli-
hood function is sampled to verify whether the pos-
terior distribution of the failure rate conforms to the 
original failure rate data distribution. According to the 
posterior mean of the parameters, the prior parameters 
of the model are continuously adjusted to achieve the 
fitting of the model to the original failure rate data. Fi-
nally, the posterior distribution of linear function pa-
rameters with variable intercept is obtained, and the 
failure rate of metering equipment in the next year in 
three provinces is predicted respectively. 

4.3 Experimental results analysis

The HBN model sampling iterations are set to 10, 000, 
and the pre-firing period is set to 2, 000. In order to 
verify the accuracy of the parameter results of the HBN 
model, the Maximum a Posteriori (MAP) estimate of the 
optimal solution is compared with the results of the 
HBN model. And Table I shows the results of the HBN 
model and the parameters calculated by MAP.

It can be seen from Table I that the intercept β differ-
ence of linear function is about 1, indicating that there 
is a certain difference in metering equipment in the 
three provinces, and this difference is related to the 
province. The difference of time coefficient early_β and 
late_β indicates that the increasing trend of failure rate 
has changed. In 2014, the change trend of failure rate 
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of metering equipment changed, and the failure rate 
showed a downward trend before 2015. The value of 
measurement error w is small, which indicates indicat-
ing that the error in the measurement process has little 
influence on the failure rate of metering equipment. 
The error between the mean value of the HBN model 
and that of the MAP model is small, which indicates the 
validity of the HBN model.

Table 1: Parameter results of HBN model

Variable Mean Standard 
deviation

2.5%
quantile

97.5%
quantile

MAP
estimation

β0 -3.388 0.311 -4.010 -2.803 -3.412
β1 -4.510 0.303 -5.120 -3.939 -4.603
β2 -2.939 0.306 -3.518 -2.293 0.932
early_βx 0.761 0.087 0.003 0.459 0.724
late_βz 0.593 0.067 0.002 0.796 0.917
α 0.938 0.066 0.001 0.816 1.075
w 2×10-6 1×10-4 2×10-6 1.8×10-4 2×10-4

Fig. 6 shows the Weibull posterior distribution of the 
failure rate in the three provinces. The red dashed line 
is the mean value of the original failure rate data in the 
three provinces. The mean value of the Weibull poste-
riori distribution is consistent with the location of the 
red line, indicating that the distribution of the failure 
rate data in the last six years obeys the Weibull param-
eter model.

Figure 6: Posterior mean distribution of HBN model

To verify the validity of the model, we compare the 
proposed model with the pooling HBN, Poisson model 
and Cauchy model. Note that the all parameters have 
only one value in pooling HBN. On the other hand, the 
difference between proposed method and Poisson 
model, Cauchy model is the observed values follow 
different distributions. For example, the Poisson model 
means that the observed data Y* obeys the Poisson re-

gression model. It’s worth mentioning that all the prior 
distributions are the same for a fairer comparison.

Fig. 7-9 show a comparison of linear fitting curve mean, 
confidence interval and original failure rate data, re-
spectively. Note that many of the gray lines are derived 
from predicted values within the confidence interval. 
The lowest and highest gray curves are confidence in-
tervals of approximate 95% linear function. The failure 
data of measuring equipment are basically within 95% 
confidence interval after the fusion analysis of fault 
data using the method presented in this paper. The lin-
ear function can follow the jump trend of failure rate, 
which shows that the HBN model can fit the fault data 
of metering equipment well.

Moreover, all the other methods only have good per-
formance on partial data. For example, the Poisson 
model can follow the trend of the data in XZ and HLJ. 
However, it have poor performance in XZ, which has a 
lower failure rate. At the same time, the pooling HBN 
cannot follow the trend of failure rate in XJ due to the 
model assumes the same trend for data in all regions.

In order to accurately predict the failure rate of measur-
ing equipment, the time data is set to 7, which means 
the failure rate in 2018. After the model is substituted, 
the mean value of the failure rate in 2018 can be pre-
dicted as follows: the average failure rate of measure-
ment equipment in XZ is 2.531, the average failure rate 
in XJ is 0.778 and the HLJ is 2.546. The predicted failure 
rate is within the confidence interval of 2017, which 
indicates that the model has the ability of short-term 
prediction.

Figure 7: Comparison of fitting curve and the failure 
rate of the XZ Province
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Figure 8: Comparison of fitting curve and the failure 
rate of XJ

Figure 9: Comparison of fitting curve and the failure 
rate of HLJ

In order to evaluate the effect of partial information fu-
sion of HBN model and realize the evaluation of differ-
ent models, the Widely Available Information Criterion 
(WAIC) is more accurate than the traditional DIC when 
considering the whole posteriori distribution of the 
model [24]. Table II gives the WAIC calculation values of 
the four models under the same linear function condi-
tion and the same observation data.

Table 2: The comparison of WAIC between HBN and 
other models

Models WAIC pWAIC weight SE
HBN -24.43 7.13 0.95 38.39
Pooling-HBN 7.26 3.71 0 35.39
Possion 123.3 5.03 0.05 19.32
Cauchy 138.04 14.09 0 36.5

It can be seen from Table II that the information crite-
rion of partial information fusion HBN model is smaller, 
the number of effective parameters of the model is 7.13, 

and the weight of model is 0.95, which is much larger 
than the rest models. The SE of the proposed method 
(HBN) is slightly larger than other models. HBN has bet-
ter and the smallest WAIC value, which means that its 
uncertainty is consistent with its accuracy. Thus the ef-
fectiveness of partial information fusion HBN model is 
demonstrated. Conversely, the rest of the models have 
higher WAIC values, including that the models cannot 
effectively fit the raw data.

Figure 10: Reliability Curves and Confidence Intervals 
of power metering equipment

When the new electric energy meter equipment is put 
into use in the region, the failure rate of the electric en-
ergy metering equipment can be calculated according 
to equation (16). The reliability of the short-term pre-
diction result of the new electric energy meter equip-
ment is shown in Fig. 10. Fig. 10 shows that the reliabil-
ity of the failure rate of the energy metering equipment 
decreases with time. After 6 years of operation, the reli-
ability of the energy metering equipment is about 0.93, 
indicating that the type of energy metering equipment 
has a higher reliability under the three regional envi-
ronmental conditions. In addition, the reliability curve 
approximates a straight line, indicating that the failure 
rate trend of the energy metering equipment is rela-
tively flat in the short term. Moreover, the confidence 
interval of the reliability of the energy metering equip-
ment is gradually increased, indicating that the uncer-
tainty becomes large. Overall, the operation strategy 
does not need to change greatly.

5 Conclusion

By analyzing the fault data characteristics of online 
power metering equipment in different regions, a mul-
ti-bass Bayesian-based Weibull parameter regression 
model is established. Firstly, the Z-score method is used 
to clean the data outliers to reduce the interference of 
the outliers on the model. Then, according to the fault 
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data of the three regions, the intercept variable regres-
sion model of partial information fusion is established, 
and the failure rate data change node is fully consid-
ered. In the case, the influence of time factor on the 
failure rate of metering equipment in the three regions 
is obtained, and the average forecasting rate of the 
metering equipment failure rate in the seventh year is 
given. The example results verify that the method can 
effectively evaluate the failure rate relationship be-
tween the measuring equipment and different areas, 
and prove the feasibility of the scheme. Prior selection 
in small samples remains a challenge, and future work 
will focus on parameter settings for small sample mod-
els.
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