
�9

An Adaptive-Parity Error-Resilient LZ'77
Compression Algorithm
Tomaž Korošec* and Sašo Tomažič

University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

Abstract: The paper proposes an improved error-resilient Lempel-Ziv'77 (LZ'77) algorithm employing an adaptive amount of parity
bits for error protection. It is a modified version of error resilient algorithm LZRS'77, proposed recently, which uses a constant amount
of parity over all of the encoded blocks of data. The constant amount of parity is bounded by the lowest-redundancy part of the
encoded string, whereas the adaptive parity more efficiently utilizes the available redundancy of the encoded string, and can be on
average much higher. The proposed algorithm thus provides better error protection of encoded data.
The performance of both algorithms was measured. The comparison showed a noticeable improvement by use of adaptive parity.
The proposed algorithm is capable of correcting up to a few times as many errors as the original algorithm, while the compression
performance remains practically unchanged.

Key words: Lempel-Ziv'77 coding, joint source-channel coding, multiple matches, error resilience, adaptive parity, Reed-Solomon coding

Na napake odporen zgoščevalni algoritem
LZ’77 s prilagodljivo pariteto
Izvleček: V prispevku je predlagan izboljšan na napake odporen Lempel-Ziv'77 (LZ'77) algoritem, ki za zaščito proti napakam uporablja
prilagodljivo število paritetnih bitov prek posameznih kodiranih podatkovnih blokov. Gre za modifikacijo na napake odpornega
algoritma LZRS'77, ki za zaščito posameznih podatkovnih blokov uporablja konstantno število paritetnih bitov prek celotnega
kodiranega podatkovnega niza. Za zapis paritetnih bitov je izkoriščena redundanca zakodiranih podatkov. Maksimalno konstantno
količino paritetnih bitov tako narekuje del niza z najnižjo redundanco, medtem ko prilagodljiva pariteta bolje izkorišča redundanco, ki
je na voljo v posameznih delih kodiranega niza in je lahko tako v povprečju bistveno večja. Predlagan algoritem posledično omogoča
boljšo zaščito proti napakam.
Meritve zmogljivosti obeh algoritmov so pokazale znatno povečanje odpornosti na napake pri uporabi novo predlaganega algoritma.
Slednji je sposoben popraviti do nekaj krat več napak kot obstoječi algoritem, pri čemer kvaliteta zgoščevanja ostane praktično
nespremenjena.

Ključne besede: Lempel-Ziv'77 kodiranje, združeno izvorno-kanalsko, večkratno ujemanje niza, odpornost na napake, prilagodljiva
pariteta, Reed-Solomon kodiranje

* Corresponding Author’s e-mail: tomaz.korosec@fe.uni-lj.si

1. Introduction

Lossless data compression algorithms, such as the Lem-
pel-Ziv'77 (LZ'77) [1] algorithm and its variations, are
nowadays quite common in different applications and
compression schemes (GZIP, GIF, etc.). However, one of
their major disadvantages is their lack of resistance to
errors. In practice, even a single error can propagate and
cause a large amount of errors in the decoding proc-
ess. One possible solution for this problem is to use a
channel coding scheme succeeding the source coding,
which adds additional parity bits, allowing error correc-
tion and detection in the decoding process. However,

such a solution is undesirable in bandwidth- or storage-
limited systems, where the amount of bits required to
carry some information should be as small as possible.
A separate use of source and channel coding is not opti-
mal, since it does not utilize inherent redundancy left by
the source coding. This redundancy could be exploited
for protection against errors. Therefore, joint source-
channel coding seems to be a better solution. Several
joint source-channel coding algorithms have been pro-
posed in the past, e.g., [2], [3], and [4]. The redundancy
left in LZ'77 and LZW encoded data and the possibility
of using it to embed additional information has been
considered and investigated in [5], [6], [7], and [8].

Journal of Microelectronics,
Electronic Components and Materials
Vol. 4�, No. � (�0��), �9 – 35

30

The LZRS'77 algorithm, proposed in [8], exploits the
redundancy left by the LZ'77 encoder to embed parity
bits of the Reed-Solomon (RS) code. Embedded par-
ity bits allow detection and correction of errors with
practically no degradation of the compression per-
formance. However, due to the limited redundancy left
in the encoded data, the ability to detect and correct
errors is limited to a finite number of successfully cor-
rected errors. To successfully correct e error bits, 2e par-
ity bits should be embedded. In the above-mentioned
scheme, the number of parity bits embedded in each
encoded block is constant and equal for all blocks, thus
e is limited by the block with the lowest redundancy.

In this paper, we propose an improvement to LZRS'77.
Instead of keeping e constant, we change it adaptive-
ly in accordance with the redundancy present in the
encoded blocks. In this way, we increase the average
number of parity bits per block and thus also increase
the total number of errors that can be successfully cor-
rected. We named this new algorithm LZRSa'77, where
‘a’ stands for adaptive.

The paper is organized as follows. In Section 2, we brief-
ly describe the LZRS'77 algorithm, which is the basis
of the proposed adaptive-parity algorithm LZRSa'77
described in Section 3. Experimental results compar-
ing both algorithms are presented in Section 4. Some
concluding remarks are given in Section 5.

2. Protection Against Errors
Exploiting LZ'77 Redundancy

The basic principle of the LZ'77 algorithm is to re-
place sequences of symbols that occur repeatedly in
the encoding string X = (X1 , X2 , X3 , …) with pointers
Y = (Y1 , Y2 , Y3 , …) to previous occurrence of the same
sequence. The algorithm looks in the sequence of past
symbols E = (X1 , X2 , …, Xi-1) to find the longest match
of the prefix (Xi , Xi+1 , …, Xi+l-1) of the currently encoding
string S = (Xi , Xi+1 , …, XN). The pointer is written as a
triple Yk = (pk , lk , sk), where pk is the position (i.e., start-
ing index) of the longest match relative to the current
index i, lk is the length of the longest match, and sk = Xi+l
is the first non-matching symbol following the match-
ing sequence. The symbol sk is needed to proceed in
cases when there is no match for the current symbol.
An example of encoding the sequence at position i that
matches the sequence at position j is shown in Fig. 1.

To avoid overly large values of position and length pa-
rameters, the LZ'77 algorithm employs a principle called
the sliding window. The algorithm looks for the longest
matches only in data within the fixed-size window.

Figure 1: An example of a pointer record for a repeated
part of a string in the LZ'77 algorithm. The sequence of
length l = 6 at position j is repeated at position i, i.e., the
current position.

Often, there is more than one longest match for a given
sequence or phrase, which means more than one pos-
sible pointer. Usually, the algorithm chooses the latest
pointer, i.e., the one with the smallest position value.
However, selection of another pointer would not affect
the decompression process. Actually, the multiplicity
of matches represents some kind of redundancy and
could be exploited for embedding additional informa-
tion bits almost without degradation in the compres-
sion rate. A small decrease in compression perform-
ance could be noticed only in case when pointers are
additionally Huffman encoded, as for example in GZIP
algorithm, specified in [9]. With appropriate selection
of one among M possible pointers, we can encode up
to d = log2M additional bits. These additional bits can
be encoded with proper selection of pointers with mul-
tiplicity M > 1, as shown in Fig. 2. The algorithm LZS'77
that exploits the above-described principle in LZ'77
scheme was proposed and fully described in [5], [6], [7],
and [8]. Since different pointer selection does not affect
the decoding process, the proposed algorithm is com-
pletely backward compatible with the LZ'77 decoder.

Figure 2: An example of the longest match with mul-
tiplicity M = 4. With a choice of one of four possible
pointers, we can encode two additional bits.

The additional bits can be utilized to embed parity bits
for error detection and correction. In [6] and [8], a new
algorithm called LZRS'77 was proposed. It uses the ad-
ditional bits in LZ'77 to embed parity bits of RS code
originally proposed in [10]. In LZRS'77, an input string X
is first encoded using the standard LZ'77 algorithm. En-
coded data Y are then split into blocks of 255–2e bytes,
which are processed in reverse order starting with the
last block. When processing block Bn, 2e parity bytes
of block Bn+1 are computed first using RS(255, 255–2e)
code and then those bytes are embedded in the point-

T. Korošec et al; Informacije Midem, Vol. 4�, No. � (�0��),�9 – 35

3�

ers of block Bn using the previously mentioned LZS'77
scheme. Parity bits of the first block can be stored at the
beginning of the file if we also wish to protect the first
block. Otherwise, to assure backward compatibility
with the LZ'77 decoder, protection of the first block
should be omitted.

In the decoding process, the procedure is performed in
the opposite order. The first block is corrected (only in
the case when the first block is protected as well) using
parity bits appended at the beginning of the file. Then
it is decompressed using the LZS'77 decompression al-
gorithm, which reconstructs the first part of the origi-
nal string and also recovers parity bits of the second
block. The algorithm then corrects and decompresses
the second block and continues in this manner till the
end of the file.

The desired maximum number of errors e to be effec-
tively corrected in each block during the decoding proc-
ess is given as an input parameter of the algorithm. This
number is upward-limited by the ability to embed bits
in the pointer selection, i.e., by the redundancy of the
encoded data. In the LZRS'77 algorithm, e is constant
over all blocks; thus its value is limited by the block
with the lowest redundancy. So e could be an arbitrary
value between zero and maximum allowable one.

3. The LZRSa'77 Algorithm with
Adaptive Parity

A constant e over all encoding blocks, as in LZRS'77, is
not optimal, since redundancy in different parts of data
string can differ significantly. If there is just one part of
the string that has very low redundancy, it will dictate
the maximum value of e for the whole string. Such low-
redundancy blocks are usually at the beginning of the
encoded data, since there are not yet many previous
matches that would contribute to redundancy. Better
utilization of overall redundancy would be possible
with an adaptive e, changing from one block to anoth-
er according to availability of redundancy bits in each
block. In that case, low-redundancy parts of the string
would affect the error protection performance just of
these parts, whereas the rest of the string could be bet-
ter protected according to its redundancy availability.
As a result, the value of e is still upward-limited by the
overall redundancy but its average value can be higher,
resulting in better resistance to errors.

On the basis of the above-described assumptions, we
propose an improved version of the LZRS'77 algorithm,
named LZRSa'77, where 'a' refers to adaptive e. The in-
put string X is first encoded using the standard LZ'77

algorithm, when the multiplicity Mk of each pointer is
also recorded. The encoded data is then divided into
blocks of different lengths, according to the locally
available redundancy. Firstly, 255–2e1 bytes are put
in the first block B1, where e1 is given as an input pa-
rameter of the algorithm. Then, the number of parity
bytes 2e2 of the second block B2 is calculated, where e2
is given as:

e2 = Σ log2 Mk / 16 . (1)
 k ε B1

If, for example, the number of additional bits that could
be embedded in the pointers multiplicity of the first
block (Σ log2 Mi) is 43, then the number of parity
bytes of the second block would be 2e2 = 243/16 = 4.
Number ‘16’ provides for proper bits-to-bytes recalcula-
tion, since the algorithm operate with the integer value
of bytes as the RS coding does. According to the ob-
tained value, the second block length is 255–2e2 = 251
bytes. The process is then repeated until the end of the
input data is reached. We obtain b blocks of different
lengths 255–2en.

After dividing all the data into blocks of different lengths,
the process of RS coding and embedding of parity bits
is performed. Embedding of parity bits is realized by ad-
justing the pointer values. The blocks are processed in
reverse order, from the very last to the first, as with the
LZRS'77 algorithm. The number of parity bytes 2en for
RS coding varies for each block. The sequence of opera-
tions of the encoder is illustrated in Fig. 3.

Figure 3: The sequence of operations on the com-
pressed data as processed by the LZRSa’77 encoder.
Here RSn are parity bytes of the block Bn.

As mentioned above, the desired error correction ca-
pability of the first block e1 is given as an input param-
eter of the algorithm, whereas en for all the other blocks
are obtained from the redundancy of their preceding
blocks and are as high as the redundancy permits. As
in the LZRS'77 algorithm, parity bits of the first block
are appended at the beginning of the encoded data, or
omitted if we want to preserve backward compatibility

T. Korošec et al; Informacije Midem, Vol. 4�, No. � (�0��),�9 – 35

3�

with the standard LZ'77 decoder. In the last case, e1 is
equal to zero.

The decoding process is similar to that used in the
LZRS'77 decoding algorithm. Each block Bn is first er-
ror-corrected using 2en parity bytes known from the
previous block Bn-1, then decoded using the LZS'77
decoder to decompress part of the original string and
obtain 2en+1 parity bytes of the next block. The amount
of parity bits is used to determine the length of the
next block Bn+1, whereas the parity bits themselves are
used to correct the block. The process is continued to
the last block. A high-level description of the encoding
and decoding algorithms is shown in Fig. 4.

Figure 4: The error-resilient LZ'77 algorithm with adap-
tive parity 2en. Here X is the input string, e1 is the maxi-
mum number of errors that can be corrected in the
first block, P is the LZ'77 encoded string of pointers, p
is a vector of possible positions for each pointer, Bn are
blocks of encoded data of variable length 255–2en, RSn
are RS parity bytes of the block Bn, and D is the recov-
ered string.

4. Experimental Results

To evaluate the performance of the proposed algo-
rithm, we performed several tests with different files
from the Calgary corpus [11], a commonly used col-
lection of text and binary data files for comparing
data compression algorithms. We implemented our
proposed algorithm in the Matlab 6.5.1 Release 13
program tool. For the basic LZ'77 encoding, the LZ'77
algorithm with a sliding-window length of 32 kilo-
bytes was used. It was implemented in Matlab as well.
Maximum length of pointers was chosen to be 255
bytes.

In the experiment, we first compared the maximal val-
ue of constant e (emax) and average value of an adaptive
e (E(en)) in different test strings. For this purpose, we
encoded different files from the Calgary corpus using
the LZRS'77 and LZRSa'77 algorithms. For maximal
constant e observation, we performed tests only on
strings of 10.000 bytes length, since the lowest-re-
dundancy parts proved to be in the first blocks of the
encoded strings, because there are not so many past
symbols yet. Thus, different string lengths practically
do not affect the maximal e, as long as the beginning
of the string is the same. For this reason, we rather
performed tests on different substrings of the same
length within each file, starting at different positions.
Average maximal e (E(emax)) averaged over all tested
substrings for each file is given in the second column
of Table 1, whereas maximal e of the first substring of
each file (and thus that corresponding to the whole
file) is given in the third column. Even if, in an unex-
pected case, the lowest redundancy part of the whole
file is not within the first 10.000 symbols, the obtained
results were still relevant, since we made additional
experiments on error-correction performance on the
first 3000 and 30.000 symbols with the same constant
parity used.

When observing average adaptive e (E(en)), we per-
formed measurements on two different lengths of
source strings, i.e., 3000 bytes and 30.000 bytes, and
we again performed the tests on different substrings
within each file for both lengths. The value of e1 was in
all cases chosen to be equal to 1. Results are shown in
fourth and fifth columns of Table 1.

The experiment results showed that the maximal con-
stant e that could be embedded in the redundancy of
the encoded string is in the best case equal to 3 (geo
file), whereas average adaptive e over large number of
blocks could be from 4,5 up to 8. These results already
justify the use of adaptive e. To justify it further, we per-
formed another experiment. We tested the ability of
each algorithm to correct random errors.

T. Korošec et al; Informacije Midem, Vol. 4�, No. � (�0��),�9 – 35

33

file
name

constant e adaptive e
E(emax) over
substrings

with
L=10.000

emax
of

the
whole

file

E[E(en)]
over

substrings
with

L=3000

E[E(en)]
over

substrings
with

L=30.000
bib 2,00 2 4,79 5,29
book1 2,38 2 4,75 4,94
book2 2,18 1 4,64 5,04
geo 2,40 3 5,48 8,32
news 1,92 1 5,05 5,93
obj1 2,50 2 5,05 /
obj2 1,46 1 4,68 6,77
paper1 2,00 1 4,64 5,14
paper2 1,88 1 4,65 4,80
paper3 1,75 1 4,62 4,87
paper4 1,00 1 4,70 /
paper5 1,00 1 4,75 /
paper6 1,67 1 4,81 5,14
progc 2,00 2 4,65 5,70
progl 2,00 2 4,48 6,21
progp 2,25 2 4,96 5,69
trans 1,22 2 4,82 6,26

Table 1: Values of maximal constant and average adaptive e
for different length (L) substrings of the Calgary corpus files

When testing error correction performance, we performed
measurements on three different files from Calgary cor-
pus, i.e., news, progp, and geo, which allow maximal values
of constant e equal to 1, 2, and 3 respectively, as shown in
Table 1. Measurements were made on the first 3000 and
30.000 bytes of each file respectively. When using the LZR-
Sa'77 algorithm, e1 could be an arbitrary value. However,
we chose values that approximately correspond to E(en) for
each of the tested files. Thus, we chose e1 = 5 for the news
and progp test strings, and e1 = 8 for the geo test string.

We tested the resilience to errors by introducing dif-
ferent number of errors randomly distributed over the
whole encoded string. For error generation, we used a
built-in Matlab function, called randerr, which gener-
ates patterns of geometrically distributed bit errors.

Results for the three test strings, all in two different
length variations, and for both described algorithms
used (LZRS'77 and LZRSa'77) are shown in the graphs in
Fig. 5 to Fig. 7. Each case of string type, string length and
algorithm used was tested with different numbers of in-
jected errors. For each number of errors, 100 trials with
different randomly distributed errors were performed
and number of successful data recovers tested.

In the graphs in Fig. 5 to Fig. 7, the measured results are plotted
with discrete points, whereas continuous curves represent
a polynomial-fitted approximation. The results show quite
an improvement in error correction capability when using
the LZRSa'77 algorithm instead of LZRS'77, which is a direct
consequence of the larger amount of parity used in the first
algorithm. The performance improvement decreases with
increasing constant e from 1 to 3, but is still noticeable also
in the last case, which is practically the best we could achieve
with the LZRS'77 algorithm. As can be seen from the results,
the performance improvement also somewhat increases
with increasing length of the string. This is probably due to
the increasing E(en) with increasing length of the string, as
evident from Table 1, whereas constant e remains the same.

The performance of the LZRSa'77 algorithm could be slight-
ly further improved using higher value of e1, which would,
however, improve only the protection of the first block.

a)

b)

Figure 5: The number of successful recovers among 100
trials for two different length (L) substrings of the file
news, for increasing number of bit errors geometrically
distributed over the encoded strings, represented as Bit
Error Rate (BER), end different algorithm used (LZRS'77
and LZRSa'77). a) L = 3000 bytes; b) L = 30.000 bytes.

T. Korošec et al; Informacije Midem, Vol. 4�, No. � (�0��),�9 – 35

34

a)

b)

Figure 6: The number of successful recovers among
100 trials for two different length (L) substrings of the
file progp, for increasing number of bit errors geometri-
cally distributed over the encoded strings, represented
as BER, end different algorithm used (LZRS'77 and LZR-
Sa'77). a) L = 3000 bytes; b) L = 30.000 bytes.

T. Korošec et al; Informacije Midem, Vol. 4�, No. � (�0��), �9 – 35

a)

b)

Figure 7: The number of successful recovers among
100 trials for two different length (L) substrings of the
file geo, for increasing number of bit errors geometri-
cally distributed over the encoded strings, represented
as BER, end different algorithm used (LZRS'77 and LZR-
Sa'77). a) L = 3000 bytes; b) L = 30.000 bytes.

5. Conclusion

An improved version of the error-resilient LZ'77 data
compression scheme was presented. It allows use of
adaptive number of parity bits over different blocks of
encoded data according to available redundancy in the
blocks. Compared to the recently proposed LZRS'77
scheme allowing only constant number of parity bits
along the whole string, the new solution better utilizes
available redundancy in the string, resulting in a larger
number of errors that can be effectively corrected. Such
an improvement does not practically degrade the com-
pression rate compared to the LZRS'77 algorithm. Even
though the parity of each block has to be calculated
each time from the redundancy of the previous block,

35

the time complexity of the new algorithm remains on
the order of that of the LZRS'77 algorithm.

However, some legacy from the LZRS'77 algorithm
still remains in the new algorithm and represents two
unsolved problems. The first is a question of an online
encoding process, which could not be achieved due
to the reverse order of block processing. The second
is protection of the first block while maintaining back-
ward compatibility.

References

1 J. Ziv and A. Lempel, “A universal algorithm for se-
quential data compression,” IEEE Trans. Inf. Theory,
vol. IT-23, no. 3, May 1977, pp. 337–343.

2 M. E. Hellman, “On using natural redundancy for
error detection”, IEEE Trans. on Commun., vol. 22,
October 1974, pp. 1690–1693.

3 K. Sayood and J. C. Borkenhagen, “Use of residual
redundancy in the design of joint source/chan-
nel coders,” IEEE Trans. on Commun., vol. 39, June
1991, pp. 838–846.

4 K. Sayood, H. Otu, and N. Demir, “Joint source/chan-
nel coding for variable length codes,” IEEE Trans.
Commun., vol. 48, no. 5, May 2000, pp. 787–794.

5 M. J. Atallah and S. Lonardi, “Authentication of LZ-
77 compressed data,” SAC 2003, Melbourne, FL,
2003, pp. 282–287.

6 S. Lonardi and W. Szpankowski, “Joint source-
channel LZ’77 coding,” in Proc. IEEE Data Com-
pression Conf., Snowbird, UT, 2003, pp. 273–282.

7 Y. Wu, S. Lonardi, and W. Szpankowski, “Error-re-
silient LZW data compression,” in IEEE Data Com-
pression Conf., Snowbird, UT, 2006, pp. 193–202.

8 S. Lonardi, W. Szpankowski, and M. D. Ward, “Er-
ror resilient LZ’77 data compression: algorithms,
analysis, and experiments,” IEEE Trans. Inf. Theory,
vol. 53, no. 5, May 2007, pp. 1799–1813.

9 RFC 1951: DEFLATE compressed data format
specification version 1.3, P. Deutsch, Aladdin En-
terprises, May 1996. Available: http://www.ietf.
org/rfc/rfc1951.txt

10 I. S. Reed and G. Solomon, “Polynomial codes
over certain finite fields,” J. SIAM, vol. 8, 1960,
pp. 300–304.

11 The Calgary corpus. Available: http://corpus.can-
terbury.ac.nz/descriptions/#calgary

Arrived: 25. 02. 2011
Accepted: 26. 1. 2012

T. Korošec et al; Informacije Midem, Vol. 4�, No. � (�0��),�9 – 35

