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Abstract: Spin is one of the leading verification tools for the model checking of distributed systems. It is used over a broad spectrum 
of applications where systems can be represented as asynchronously running processes. This paper provides an overview of the 
concepts of model checking, the Spin model checker together with its input language Promela, and of the available graphical user 
interfaces to Spin. In order to offer Spin users an integrated development environment for Spin, we have developed a SpinRCP. We 
introduce its structure and demonstrate some of its features by considering a standard algorithm for leader election in a unidirectional 
ring.
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Preverjanje modelov z uporabo orodij Spin in 
SpinRCP
Izvleček: Spin je eno izmed vodilnih verifikacijskih orodij za preverjanje modelov porazdeljenih sistemov. Uporablja se za širok 
spekter aplikacij, pri katerih lahko sisteme predstavimo kot asinhrono izvajajoče se procese. V članku podajamo kratek pregled 
osnovnih pojmov o preverjanju modelov, preverjalniku modelov Spin, njegovem vhodnem jeziku Promela in razpoložljivih grafičnih 
uporabniških vmesnikih za Spin. Da bi uporabnikom orodja Spin ponudili integrirano razvojno okolje za Spin, smo razvili SpinRCP. 
Predstavljamo njegovo strukturo in prikažemo nekatere izmed njegovih značilnosti na primeru standardnega algoritma za izbiro vodje 
v enosmernem obroču.
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1 Introduction

The constantly increasing sizes and complexities of 
contemporary ICT (Information and Communication 
Technology) systems as well as demands for reduction 
in costs and a shortening of time-to-market for a new 
product, confront designers with harder and harder 
tasks for ensuring the correct functioning of developed 
systems. Nowadays, ICT systems are becoming ubiqui-
tous in our daily lives and we have to rely on their cor-
rectness. If any of them malfunction, it will be at least 
annoying for its user but in the case of safety-critical 
systems, such as for example systems in transport, med-
icine, industry, ecology, telecommunications, space 
exploration, and the military, each undiscovered error 
in the hardware or software may cause a lot of dam-
age, threatening the health or even the lives of people. 
Let us recall some dramatic examples. Between 1985 
and 1987 four cancer patients died and two were seri-
ously injured following incorrect behaviour (100-times 
radiation overdosing) of the Therac-25 anti-tumour ir-

radiating machine. The cause was a design error in the 
control software. On 4th June 1996, the Ariane 5 rocket 
changed trajectory and exploded 40 seconds after be-
ing launched on its first flight. The cause of failure was 
a variable overflow during the conversion of a 64-bit 
real number to a 16-bit integer. In 1997, a computer on-
board the Mars Pathfinder had to be reset often due 
to an error in the algorithm for access of several pro-
cesses to a common computer bus. A design error in 
the Intel Pentium floating point division algorithm in 
1994 caused the loss of about 450 million dollars when 
replacing faulty processors. Therefore, the reliability of 
systems is a key issue in the system design process that 
takes up the greatest part of the design time and ef-
fort. A very promising approach towards ensuring the 
correctness of ICT systems is that of model checking. 
Model checking is a formal verification method that 
can automatically verify the desired behavioural prop-
erties of a given system through exhaustively exploring 
all states of a system’s suitable model. One of the most 
successful model checkers is Spin [1, 2]. Although it was 



236

originally designed as a tool for protocol verification, 
it is capable of model checking and simulating almost 
any system consisting of asynchronously running pro-
cesses. Spin is a command line tool that accepts user 
commands from a command line and also outputs the 
results there.  In order to ease Spin model checking, 
some graphical user interfaces have appeared for Spin. 
Two of them were developed at the Faculty of Electrical 
Engineering and Computer Science at the University 
of Maribor. In this paper we introduce the latest one 
called SpinRCP.

Section 2 introduces the basic concepts of model 
checking including its strengths and weaknesses. Sec-
tion 3 provides a short overview of Spin and its input 
language called Promela. Section 4 gives an overview 
of the currently available graphical user interfaces for 
Spin. Section 5 introduces our new integrated devel-
opment environment (IDE) for Spin called SpinRCP. 
The use of SpinRCP is demonstrated on the model of 
an algorithm for leader election in a unidirectional ring 
in Section 6. Section 7 draws together the concluding 
remarks. 

2 Model checking

Model checking is an automated technique that, given 
the finite-state model of a system and a formal prop-
erty, systematically checks whether this property holds 
for (a given state in) that model. A detailed explanation 
of the model checking technique can be found in [3]. 
A schematic view of model checking is shown in Fig. 
1. We can distinguish between three different phases 
when applying model checking to a system: the mod-
elling, running, and analysis phases. 

Figure 1: Schematic view of model checking.

In the modelling phase, a model of the system under 
consideration has to be obtained. Models describe the 

possible behaviours of systems in a precise and unam-
biguous manner. They are usually expressed as finite-
state automata that consist of a finite set of states and 
a final set of transitions. Models can be created either 
manually or automatically using a model extraction 
tool. In both cases the model has to be described in 
a description language used by the model checker. 
Simple errors within the model can be found by simu-
lation prior to the model checking. Such inexhaustive 
simulation can disclose errors in the model but it can-
not guarantee that the model is error-free.  In order to 
find any remaining subtle errors, we have to resort to 
rigorous verification using model checking.  The infor-
mal requirements for the system’s behaviour have to be 
formalised into precise and unambiguous properties 
using an adequate property specification language. A 
kind of temporal logic is most often used. The model 
checking process actually checks whether the sys-
tem description M is a model of a temporal logic for-
mula P. A temporal formula can express the behaviour 
of a system over time. It allows the specifying of rele-
vant system properties regarding the following kinds: 
functional correctness (does the system do what it 
should?), safety (“something bad never happens”), live-
ness (“something good will eventually happen”), fair-
ness (does an event occur infinitely often under certain 
conditions?), and real-time properties (does the system 
act in due time?).

In the running phase the user has to set various options, 
parameters, and directives for the model checker that 
should be used for verification. Then, the model check-
er automatically checks the validity of the property un-
der examination in all states of the system model.

In the analysis phase the user has to evaluate the out-
come of model checking performed within the pre-
vious phase. There are three possible outcomes: the 
specified property is either valid or violated in the giv-
en model, or the model turns out to be too large to fit in 
the available computer memory or the model checking 
run is unfinished within a reasonable amount of time. If 
the property is valid, the next property can be checked 
with a new run perhaps with different options, param-
eters, and/or directives. If the property is violated, a 
counterexample is generated that can be analysed by 
simulation. The counterexample guides the simula-
tion run across a path where the property is violated. 
A thorough counterexample analysis can reveal the 
cause of the violation. It may be a modelling error, a sys-
tem design error, or a property error. In the case of the 
modelling error, the model does not reflect the design 
of the system. The model has to be corrected and all 
the properties have to be checked again. In the case of 
the system design error, the system does not behave 
as required and has to be corrected. The last possible 
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cause is that the property does not reflect the informal 
requirement for the system behaviour. This implies a 
revision of the property and a new verification for this 
property. The designed system is verified with respect 
to the given properties if and only if all of them have 
been proven valid. Whenever the model is too large to 
be handled within the available amount of computer 
memory or within a reasonable time, the model has to 
be reduced using different abstractions.  

Model checking has many strengths including the fol-
lowing ones: it is a general technique that is applicable 
to a wide range of systems (e.g., protocols, hardware, 
software), it allows partial verification (only the more 
relevant properties are checked), it is nothing harder 
to find less likely errors than the more likely ones, it 
provides a counterexample in case a property is invali-
dated, it is an automatic technique and software tools 
exist, or it is more and more accepted in the industry. 

On the other hand, it also has some weaknesses: it is 
mainly appropriate for control-intensive applications 
and much less suitable for data-intensive applications, 
it is applicable only to final-state systems, it verifies a 
system model, and not the system itself, its results are 
only as good as the system model, it checks only given 
properties and provides no guarantee about the com-
pleteness of the results, it is faced with state-space ex-
plosion, or it cannot handle parameterised systems.

Despite these weaknesses it is a fact that model check-
ing is an effective technique for exposing potential de-
sign errors and thus increases the quality of a system 
design. 

3 Spin and Promela

This section provides a short introduction to the input 
language of Spin called Promela and the main features 
of Spin.

3.1 Short Introduction to Promela

Promela (Process or Protocol Meta Language) is a 
language for describing finite state automata. It is not 
intended to be an implementation language but a 
system description language that is aimed at facilitat-
ing the searches for good abstractions of systems’ de-
signs. The language is oriented towards the modelling 
of process coordination and synchronisation, and not 
to computation. The reason is simple. Promela is not a 
programming language but a verification modelling 
language. Promela language reference can be found in 
[1].

A Promela model consists of processes, variables, and 
channels. It corresponds to a finite state transition sys-
tem, hence all objects in Promela are bounded. The 
processes are global objects, whilst the variables and 
channels may be declared either as global or local to a 
process. A new inline or block scope for variables has 
been introduced since Spin Version 6. 

The processes are instantiations of proctype declara-
tions and define parts of the system’s behaviour. A 
proctype consists of a name, a list of formal parameters, 
local variable declarations, and a body. The body con-
sists of a sequence of statements. A process executes 
concurrently with all other processes. It communicates 
with other processes using either global (shared) vari-
ables or channels. There may be several processes of 
the same type. Each process has its own local state that 
consists of a process counter (current location within 
the proctype) and the values of the local variables. Pro-
cesses can be created within any process at any point 
of execution using the run statement. They can also be 
created by adding the keyword active in front of the 
proctype declaration. A so-called init process becomes 
active in the initial state of the system. It serves to ini-
tialise other processes and global variables.

Promela has nine basic (integer) variable types: bit or 
bool (1 bit), byte (8 bits), chan (8 bit), mtype (8 bit), pid 
(8 bit), short (16 bits), int (32 bits), unsigned (1≤n<32 
bits). More complex types (records) can be composed 
from the basic types with the keyword typedef.

Message channels in Promela are used to model the 
exchange of data between processes. Channels can 
be either asynchronous or synchronous (rendezvous). 
Asynchronous channels are queues or buffers, and 
can store a finite number of messages. Synchronous 
channels have a length of zero. Channel declaration 
is introduced by the type name chan followed by the 
channel name, length of the channel queue (channel 
capacity) and the structure of the messages, which can 
be stored in the channel as a comma-separated list of 
type names.

The body of a process consists of statements that ex-
ecute sequentially. There are two kinds of statements: 
statements that never block and statements that may 
block. An expression is also a statement and is executa-
ble if it evaluates to non-zero but is blocked otherwise. 
No other statement within a process may be executed 
until the statement evaluates to true, which may result 
from a variable assignment or a received message, for 
example. Statements if and do consist of one or more 
option sequences. An option sequence begins with a 
guard, and if the guard evaluates to true, the option 
sequence is selected for execution. If more than one 
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guard is true, the selection of the statement to be ex-
ecuted is non-deterministic. If no choice is executable, 
the statement is blocked. The only difference between 
these two statements is that after the execution of the 
selected statement, a do statement repeats the choice 
selection but an if statement ends the execution. The 
always executable break statement exits a do loop.

There are four ways to express correctness properties 
in Promela: assertions, trace assertions, labels, and nev-
er claims. Assertions express invariants. If an invariant 
is false at the point where the assertion occurs, Spin 
reports an error. Trace assertions perform similarly to 
channels. Labels can be of type accept, end, and pro-
gress.  They mark the states in a process and have a 
special meaning when Spin is run in verification mode. 
The accept state labels are normally used only in never 
claims that are mentioned below. The verifier can find 
all cycles that do pass through a state with an accept 
label. The end label marks a valid end state that is not at 
the end of a process’ code (i.e., the closing curly brace 
in the corresponding proctype body). The progress la-
bel marks a statement in a Promela model that accom-
plishes something desirable and thus makes progress. 
The never claim expresses behaviour that should never 
occur. Usually, it is automatically generated from a lin-
ear temporal logic (LTL) formula. 

3.2 Principles of Spin

Spin is one of the most often used and successful mod-
el checkers. It was written by Gerard J. Holzmann at Bell 
Labs [1, 2]. The software has been available freely since 
1991, and continues to evolve. The latest version of 
Spin is Version 6.2.5 issued on 4th May 2013. Spin down-
load distributions and a lot of additional tools and rel-
evant information can be found at the Spin home page 
http://spinroot.com/. Spin beginners’ tutorial and prac-
tically-oriented introduction to the principles of the 
Spin model checker are available in [4] and [5], respec-
tively. The Spin model checker takes a Promela model 
as an input. Hence where its name is derived from. 
Spin is an acronym for Simple Promela Interpreter. In 
2001, the Association for Computing Machinery (ACM) 
recognized Dr. Gerard Holzmann by a prestigious ACM 
Software System Award for Spin. 

Let us suppose that a Promela model M has n pro-
cesses, defined by proctype declarations. Spin first 
transforms them into finite state automata A1, A2, …, 
An. Then, it creates an asynchronous product of all au-
tomata. The states of this product automaton are called 
the state space or the reachability graph of the model. 
Next, consider that a property that has to be satisfied 
by a model, is expressed by an LTL formula f. Spin first 
generates a never claim for the negated formula ¬f and 

converts it into a corresponding Büchi automaton, B. 
Spin can check if M satisfies f by computing the global 
system automaton S

We use the operator ∏ to represent an asynchronous 
product of multiple component automata, and ⊗ to 
represent the synchronous product of two automata 
[1]. The automaton S is now analysed for its acceptance 
properties. If S has accepting ω-runs (i.e., a certain state 
in the set of its final states is visited infinitely often in 
the run), then formula f can be violated (and ¬f can be 
satisfied). If no accepting ω-runs are found, then the 
system is considered valid. In this way liveness proper-
ties are formulated. Informally, a liveness property says 
that “something good will eventually happen”. Spin 
works the other way round. It tries to find a (infinite) 
loop in which the “good things do not happen”. If there 
is no such loop, the property is satisfied. Another class 
of properties is safety properties (e.g., invariance, dead-
lock, livelock, unreachable states). Informally, a safety 
property says that “something bad never happens”. 
Spin tries to find an execution path leading to the “bad” 
thing. If there is no such execution path, the property 
is satisfied.

For each model to be verified, Spin first generates a C 
verifier program, which can then be compiled to the 
executable verifier called pan. When it finds an error, a 
counterexample is generated, which can be used in a 
guided simulation that replays the execution path that 
violated the property. Random and interactive simula-
tion is also available. They can be used for the sake of 
early detection of (simple) errors before verification. 

Spin has several optimisation algorithms to make the 
verification process more effective (e.g., partial order 
reduction, statement merging, state compression, bit-
state hashing, hash-compact) [1]. In addition, a slicing 
algorithm gives the user hints of what can be “thrown 
away” in a model description in order to reduce space 
and time consumption.

3.3 Spin Application Domains

Due to the nature of Promela, it can be used to mod-
el many different kinds of systems of asynchronously 
(and synchronously) communicating processes [6]. 
Thus, Spin that takes a Promela model as its input, has 
been used for a wide range of different applications: 
protocol design and verification, feature interaction, 
safety critical system verification, embedded and re-
active system verification, hardware circuit modelling, 
hardware/software codesign, finding solutions for op-
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timising problems, verifying contracts and guidelines, 
verifying business processes, modelling telephone 
switching systems, modelling multimedia presenta-
tions, modelling routers and network traffic, modelling 
operating system kernels, scheduling and plan execu-
tion, verifying bytecode, modelling genes, etc.

4 Graphical environments for Spin

The most basic way of using Spin is textual. A user en-
ters the commands at the command line and Spin out-
puts are printed on standard output afterwards. Such 
an approach to model checking could be difficult and 
discouraging especially for newcomers who are not 
yet well acquainted with Spin commands. Of course, 
the availability of a user-friendly graphical interface 
to Spin is of a considerable benefit for skilled users as 
well. In order to accomplish these needs, several differ-
ent graphical interfaces or environments for Spin have 
been developed. This section provides a brief over-
view of Xspin, jSpin, Eclipse Plug-in for Spin, iSpin, and 
EpiSpin. In the next section we present our SpinRCP.

4.1 Xspin

Xspin [1] was the first graphical interface to Spin. The 
interface runs independently from Spin itself. It gen-
erates the proper Spin commands in the background, 
based on user menu selections and button clicks, then 
obtains the Spin output and wherever possible at-
tempts to generate a graphical representation of this 
output. Xspin interface was very suitable for dealing 
with small models, but coping with larger ones was 
much more difficult due to the lack of syntax colour-
ing and code folding. In addition, the opening of a 
separate window for each task during investigation of 
a model was inconvenient.

Xspin was written in Tcl/Tk script language. The last 
version of Xspin was Xspin Version 5.2.5 from 17th April 
2010. Since then it has no longer been supported. In 
Spin Version 6 it was superseded by iSpin.

4.2 jSpin

jSpin [7] is an alternative graphical user interface for 
the Spin model checker. It was developed by M. Ben-Ari 
primarily for pedagogical purposes. It is written in Java. 

jSpin’s interesting part is its SpinSpider component, 
which is very useful for demonstrating the properties 
of concurrent programming. As in the case of Xspin, 
syntax colouring and code folding are missing. In con-
trast to Xspin, message passing between communicat-
ing processes is displayed only in textual form.

4.3 Eclipse Plug-in for Spin

In [8, 9] we introduced a new approach for automat-
ic model extraction and applied it in our tool called 
sdl2pml. It can generate a Promela model of a system 
specified in SDL. The tool was tested on the implemen-
tation of an ISDN User Adaptation (IUA) protocol, which 
is part of the SI3000 softswitch. The specification was 
developed by Iskratel d.o.o., which is the largest Slo-
venian telecommunication equipment developer. The 
generated Promela model is huge with its 79,281 lines 
of code. We didn’t have any suitable Promela editor 
that would be suitable for such large models. There-
fore, we decided to create an Eclipse Plug-in for Spin 
with a user-friendly Promela editor that includes syntax 
colouring and code folding and similar capabilities for 
running Spin syntax check, simulation and verification 
as Xspin [10, 11]. In order to ease analyses of extremely 
long Spin simulation trails (e.g., Spin trail of the simple 
call with the use of IUA protocol consists of 55,371 lines 
of text and contains 21 processes that communicate 
using 261 messages) we have developed a Spin Trail to 
Message Sequence Chart (MSC) tool called st2msc [12]. 
It converts a Spin simulation trail into a standard MSC 
textual representation according to standard Z.120 
[13]. Professional telecommunication design tools such 
as ObjectGEODE can read this MSC representation and 
display message sequence charts in graphical form. 

The Spin Plug-in is written in Java and uses numerous 
other plug-ins available within the Eclipse environ-
ment. It has proved to be very useful when working 
with large models but also has some shortcomings: an 
interactive simulation is not implemented, better filter-
ing of the Spin simulation output trail is missing, and 
graphical display of MSCs is only possible with the use 
of external tools.

4.4 iSpin

iSpin [14] is the graphical user interface that has re-
placed Xspin since Spin Version 6.0.0.  It was provided 
by the Spin author, G. J. Holzman, and is included in 
each new Spin release. Just like Xspin, iSpin is imple-
mented using the Tcl programming language and the 
Tk graphical user interface toolkit. 

iSpin is a good upgrade of Xspin and is much more us-
er-friendly, because all operations display their results 
in different areas of a single window and don’t open 
new windows as in the case of Xspin. iSpin is the only 
graphical user interface to Spin that supports a swarm 
verification run [15] that distributes verification loads 
amongst more computing cores or platforms. Syntax 
colouring and code folding would be welcome for the 
editing of large Promela models.
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4.5 EpiSpin

EpiSpin [16], introduced by de Vos et. al., is an Eclipse 
plug-in for editing Promela models and starting Spin 
verification and simulation runs. It includes its own er-
ror checker that instantaneously feedsback on syntax 
and semantic errors, syntax highlighting, code folding, 
reference resolving, and a graphical tool for displaying 
the static relationships between channels, and process-
es and global variables. EpiSpin has been built using 
the Spoofax language workbench. 

This tool is primarily oriented towards providing vari-
ous editor services for editing Promela models and a 
dot graph that shows how model processes can com-
municate using channels and global variables.

5 SpinRCP IDE

Motivated with good responses to our Eclipse Plug-
in for Spin and suggestions for the integration of the 

full functionality of the then graphical interface Xspin 
into Eclipse, we decided to develop an integrated de-
velopment environment that will facilitate entering 
new or reviewing extracted Promela models from an 
existing software code, simple parameters choosing 
for individual operations on the model, running Spin 
verification and simulation, and keeping records of file 
versions [17]. This new environment will remove some 
disadvantages of Eclipse Plug-in for Spin, particularly 
the lack of interactive simulation implementation and 
the need for external tools to display MSCs graphically. 

For the implementation of this environment we select-
ed the Eclipse Rich Client Platform (RCP) technology. 
RCP is the minimum set of plug-ins needed to build 
a rich client application. It allows us to quickly build a 
professional-looking application, with native look-and-
feel, on multiple platforms. 

5.1 SpinRCP architecture

After launching the application, one single window 
entitled SpinRCP with its version number opens. Ac-
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cording to the terminology of Eclipse it is called a 
Workbench. A Workbench consists of perspectives, 
views and editors. A perspective is a group of views 
and editors in the Workbench window. A view and an 
editor are visual components within the Workbench. 
In SpinRCP, there are many different views (e.g., Model 
Navigator, Console, Simulation, Spin Trail To MSC, CVS 
Repositories, ...) and only two editors (Promela Editor as 
a special case of Text Editor and MSC Viewer as a special 
case of Graphical Editor). Some features are common to 
both views and editors. We use the term “part” to mean 
either a view or an editor. Parts can be active or inac-
tive, but only one part can be active at any one time.   
The active part is the one where the title bar is high-
lighted. Using a simple drag-and-drop operation you 
can relocate and/or resize any part and thus reform the 
SpinRCP perspective at your will. The outlook of Work-
bench with SpinRCP perspective during verification is 
shown in Fig. 2. It consists of the Menu bar, the Tool bar, 
the Model Navigator View, the Promela Editor, and the 
Console View. Below we present in short these parts of 
the Workbench.

5.2  Menu bar

At the top of the Workbench there is a Menu bar with 
five menus already known from Eclipse: File (to open, 
save, or print a file, and exit the application), Edit (to 
undo or redo an editing action, to cut, copy, paste, or 
delete a selected text, and to search for and replace a 
specific text in the Promela Editor or the Console), Run 
(to run any of the SpinRCP tools), Window (to show any 
of the available views, to open, save, or reset a perspec-
tive, to set general or Spin preferences), Help (to obtain 
installation details about SpinRCP, to browse help con-
tents including the possibility of printing the selected 
topics without or with all subtopics, allows locating lo-
cal topics, remote documents, and other documents 
given a search query, gives context-sensitive help, and 
displays a list of key bindings).

5.3  Tool bar

Below the Menu bar is the Tool bar. The first three Tool 
bar icons (Save, Save All, and Print…) are shortcuts of 
the equally named operations from the File menu. They 
are followed by eight shortcut buttons for launching a 
specific SpinRCP action. Syntax Check uses Spin –a op-
tion for performing a thorough model syntax check and 
generates the source C program for a model-specific 
verifier. Redundancy Check uses Spin –A option to ap-
ply a property-based slicing algorithm for the model, 
which can detect eventual redundancies in the model 
and generate suggestions on how the model could be 
revised in order to use less memory. Symbol Table uses 
the Spin –d option to produce symbol table information 

for the Promela model. The information for each Prome-
la object depends on its type. Simulation opens the 
Simulation preference page, where the user can select 
the type of simulation (random, guided, interactive) and 
some simulation parameters. Then the simulation view 
opens and the user can start the selected type of sim-
ulation. Verification opens the Verification preference 
page, where the user can select and/or enter many basic 
and advanced verification options and then verification 
starts. Automata View opens the Automata View prefer-
ence page, where the user can select in which graphical 
format the automata should be displayed. Ten different 
file formats are currently available. SpinRCP uses options 
–o3 and –a to generate the verifier source C code, then 
compiles it to pan and runs pan using run-time option 
–D. This option generates state tables for each proctype 
and each never claim in the format accepted by the dot 
tool from Graphviz [18]. These state tables are redirected 
to a text file. Next, the dot tool transforms this text file to 
a set of files (one file for each proctype or never claim) 
with the previously selected graphical format. Then, 
a dialogue appears, where the proctype or the never 
claim to be displayed can be selected. Finally, a system 
program, assigned to a given file type is opened and the 
selected automaton is displayed. In the Simulation View, 
where the MSC Viewer is active, two other shortcut but-
tons are enabled – Export to MSC and Import trail. By 
clicking the first one the currently displayed MSC in the 
MSC Viewer is exported to a selected file with standard 
MSC textual representation according to standard Z.120 
[13] using the st2msc tool introduced already in [12]. By 
clicking the second button the Spin simulation trail in a 
selected file is read-in and the MSC is displayed in the 
active MSC Viewer. 

5.4  Model Navigator

The Model Navigator View is designed to create a new 
file, folder, or project resource, an untitled text file, or 
import resources from the local file system into an ex-
isting project. The resources on local disk are represent-
ed in a tree structure. If a user double-clicks a file, an 
appropriate internal editor or external program opens 
this file. For Promela files of type pml and simulation 
trail files of type out the Promela Editor and MSC View-
er Editor are default editors, respectively. On the Spin-
RCP General preference page either an internal editor 
or an external program can be associated for each file 
type. Using the Project wizard within the Model Navi-
gator we have to generate a project, which is actually 
a place, where our models and other files, produced 
by the SpinRCP IDE, will be stored. Within a wizard for 
the creation of a new Promela model, a user has to se-
lect a project (that is a container where the model is 
to be stored) and enter the file name of type pml. The 
Promela Editor opens a new file with a given name and 
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automatically inserts an empty init process so that the 
user doesn’t need to do it manually.

5.5 Promela Editor

We have developed the Promela Editor already for our 
Eclipse Plug-in for Spin [10, 11]. In SpinRCP it is almost 
unchanged. For ease of viewing and editing models 
the following features are available: syntax highlight-
ing, code folding, content assist, and marking a place 
of a syntax error. 

Syntax highlighting is a feature of Promela Editor that 
displays the text of the source file in different colours 
according to the category of terms. Highlighting does 
not affect the meaning of the text itself; it is only in-
tended for human readers. The colours for different 
groups of reserved words, comments, and default text 
can be selected on the Promela Editor preference page. 
The default colours for text and comments are black 
and blue, respectively. According to the Promela lan-
guage reference in [1], Promela reserved words can be 
grouped into seven sections: Meta Terms, Declarators, 
Control Flow Constructors, Basic Statements, Prede-
fined Functions and Operators, Embedded C code, and 
Omissions. All the reserved words in a section will be 
displayed in the same colour. In each section a different 
colour can be set. By default, reserved words from all 
seven sections are displayed in the same (violet) colour. 
By default, the colours are enabled. They can also be 
disabled by deselecting the Enable colours checkbox.

Code folding allows the user to selectively hide or dis-
play sections of a currently-edited file. This allows the 
user to manage large amounts of text whilst viewing 
only those subsections of the text that are specifically 
relevant at any given time. Code folding is possible be-
tween an opening curly bracket “{“ and closing curly 
bracket “}”. This feature is commonly used to hide/dis-
play the bodies of large proctype declarations and is 
essential for studying the specifications in real systems.  

Content assist or autocomplete is a functionality pro-
vided by SpinRCP that helps the user to write code 
faster. A user can just type in the first letter(s) of the re-
served word and then press Ctrl+Space to be offered 
all the choices that match the entered letters that are 
valid for the current context. He/she simply selects the 
wanted word. This help is especially useful for a begin-
ner who is not yet well acquainted with Promela syntax.  

The Promela Editor uses a mechanism for marking syn-
tax errors. If the Spin syntax checker detects a syntax 
error within Promela source code, SpinRCP parses its 
error message and finds out the line number where the 
error occurred. The Promela Editor marks this line with 

an error icon. A detail reason for the displayed syntax 
error is shown in the Console and in the Problems View.

Many instances of the Promela Editor containing 
Promela (or other) files can be opened simultaneously 
but only one editor can be active at any one time.  The 
active editor is the one, the title of which is highlighted.

5.6  Console

Console is a view that is used for displaying the syn-
thesised Spin commands and Spin textual outputs for 
all actions on the model. Below the console title bar 
a header line is displayed that consists of four strings: 
“Spin” – the parent application that is executing, the 
name of the action that is being performed (e.g., Veri-
fication, Random Simulation, etc.) in square brackets, 
the full path to the file containing the Promela model, 
over which the action is being performed, the exact 
date and time at which the action started.

All outputs for the same type of action (e.g., verifica-
tion) and the same model are written to the same con-
sole. Thus, the number of created consoles at any time 
is equal to the sum of the number of different actions 
that have been performed on each model so far. Filter-
ing of Spin outputs is helpful for a user who can now 
gather the results that are important to him/her much 
more easily. The contents of any console can also be 
cleared or copy-pasted in the whole or just within a se-
lected area anywhere else for later use.

5.7 Preference pages 

SpinRCP has several preference pages on which the 
user can set values to different kinds of variables. The 
following preference pages are available:
- General,
- Spin,
- Automata View,
- MSC Viewer,
- Promela Editor,
- Simulation,
- Verification.

In the General preference page a subset of the more 
common general preferences from Eclipse can be set 
(appearances of colours and fonts, editors file associa-
tions, different text editors’ options, keys’ bindings, per-
spectives, and workspace options, etc.).

Spin preference page (Fig. 3) is used to set paths to 
external tools. These paths have to be set before the 
first usage of SpinRCP. Spin is the main external tool for 
which the SpinRCP was developed at all. Therefore, it 
is mandatory to set the path to Spin. Since Spin gen-

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250



243

erates a verifier for each model being checked as C 
source code, which has to be compiled to an execut-
able code, we need an installed C compiler. We use gcc-
4 from Cygwin environment and that is why we have 
set the path to gcc-4 C compiler. The conversion of a 
Spin textual simulation output trail to MSCs is done by 
the st2msc tool [12]. Therefore, the absolute path to the 
file st2msc.jar has to be set. Of course, the path to the 
Java Runtime Environment that runs st2msc.jar has to 
be set, too. A path to the Graphviz dot tool is neces-
sary if we want to generate graphs of the processes and 
never claims. If the PATH environment variable of the 
computer system includes paths to Spin, C compiler, 
Java, and dot, we don’t need to enter their absolute 
paths but just their names as shown in Fig. 3. Paths with 
spaces are also allowed. SpinRCP recognises such paths 
and encloses them in double quotes.

Figure 3: Spin preference page.

The Automata View preference page (Fig. 4) gives the 
user a choice to select a type of files that will contain 
the computed state transition system for all processes 
in the model and all never claims, and whether or not 
the automata view dialogue will be shown after graph 
creation. Currently the following file types are support-
ed: bmp, dot, eps, fig, gif, jpg, pdf, png, svgz, and tif.

On the MSC Viewer preference page the MSC refresh 
interval can be set (default is 50 ms). In addition, it can 
also be set as to whether the message parameters will 
be shown in MSC diagrams or not.

The Promela Editor preference page is used to select 
colours for different categories of terms in Promela 
source file or disable colours.

The Simulation preference page (Fig. 5) offers the user 
the possibility of selecting the Spin simulation mode 

(random, guided, or interactive). A seed value can 
be set for random simulation. Either the default Spin 
trail file with the extension .trail added to the original 
Promela source file or any other Spin trail file can be 
selected for guided simulation. The number of initial 
steps skipped (default 0), the maximum number of 
steps (default 10000), and how a full queue is simulated 
(either blocks or loses new messages), is also selected 
on this page.

The most complex preference page in SpinRCP is the 
Verification preference page (Fig. 6 and Fig. 7). In the 
upper part, the user can export current verification pa-
rameters (verification profile) to an xml file and import 
or reload a previously saved verification profile. Verifi-
cation options are accessible below in two tabs: Basic 
Options and Advanced Options. 
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In the Basic Options tab (Fig. 6), a user can select a cor-
rectness property to be proved (either safety or live-
ness) with several additional options, the search mode 
(exhaustive, bitstate hashing or hash-compact), how a 
full queue behaves during verification (either blocks or 
loses new messages), the explicit use of user-entered 
compile-time and run-time parameters that supersede 
the clicked options and the elsewhere entered parame-
ters, and how a never claim (if any) is specified. A never 
claim can be specified in four different ways. In the first 
one, which is a default, a never claim or an LTL formula 
is specified in the model itself. In the text field right to 
the label the name of the never claim/LTL formula to be 
checked against the model has to be written. Such an 
in-model never claim specification has been possible 
since Spin Version 6. The second method is to enter an 
LTL formula in the text field. The third one is to enter or 
select the file name, in which the single-line LTL formu-
la is written. The last way to specify a never claim is to 
enter or select a file name with a contained never claim. 

Figure 6: Basic options on the Verification preference 
page.

In the Advanced Options tab (Fig. 7) it is possible to 
enter several advanced verification parameters (the 
amount of the available physical memory in mega-
bytes, the estimated state space size, the maximum 
search depth, number of hash-functions in bitstate 
mode, extra verifier generation options, extra compile-
time directives, and extra run-time options) and select 
some error-trapping and verification run type options. 

5.8  MSC Viewer 

The MSC Viewer is used for a graphical display of the 
Spin simulation output trail. Otherwise, as in the case 
of [10, 11], external (often commercial) tools would be 
needed to accomplish this (e.g., ObjectGEODE). The 
MSC Viewer is shown in the central part of Fig. 8. It works 
in two different modes. In the first one it displays an al-
ready generated simulation trail from a file of type out. 
This kind of MSC display can be achieved either by a 
double-click on an out file in the Model Navigator view 
or by a click on the Import trail button in the Tool bar 
when the Simulation View is active. The second mode 
of displaying the MSC is “on-the-fly” when the simula-
tion is running. In this mode, two Java threads run in 
parallel: a Spin simulation thread and an MSC refresh-
ing thread. The simulation thread executes the Spin 
simulation (random, guided, or interactive). Simulation 
output is parsed line by line and for each new parsed 
line the list of created processes and messages that 
have been sent and received up to this time is updated. 
In parallel, the MSC refreshing thread is refreshing the 
MSC displayed in MSC Viewer. If any new process or any 
new message has been added to the corresponding 
list since the last screen refresh, the MSC is changed 
accordingly. The MSC Viewer is implemented using the 
Graphical Editing Framework (GEF) that provides tech-
nology for creating rich graphical editors and views for 
the Eclipse Workbench UI. 

Figure 7: Advanced options on the Verification prefer-
ence page.
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5.9 Simulation View 

The Simulation View is shown after the Simulation but-
ton in the Tool bar has been pressed and the Simulation 
preference page confirmed (right side of Fig. 8). At the 
top of the view there is a label showing the previously-
selected simulation type including the Promela model 
filename and two simulation buttons, Single Step and 
Run. By clicking the Single Step button, MSC is being 
drawn message by message (if any message is sent and 
received in the model at all). Clicking on the Run but-
ton periodically updates the MSC each time the MSC 
refresh interval expires as given on the MSC Viewer 
preference page. 

Several options to adapt the display of MSCs are avail-
able below the simulation buttons. The user can do the 
following:
- select a subset of messages that will be ignored 

and not displayed in the MSC diagram,
- select a subset of messages that will be displayed 

in the MSC diagram,
- rename selected messages,
- join two or more processes into a new virtual pro-

cess, and
- select whether to show or hide message param-

eters.

The first two options are very useful if we have to ex-
plore simulation traces of large models with many pro-
cesses and a large number of messages, and can thus 
concentrate only on those that we are interested in. 
Selected messages are entered using their space-sep-
arated IDs. The need for renaming of messages appears 
when our sdl2pml tool [8, 9] has extracted a very large 
Promela model from an SDL code of a real product. 
Since Promela allows a maximum of 255 different mes-
sage types, the sdl2pml tool presents messages using 
integers. It is very difficult to track a simulation trail if 
messages are represented by numbers instead of hav-
ing sensible names. The renaming of messages helps, 
in that the MSC is more understandable. For example, 
to rename a message with ID 1 to one, the following 
command has to be entered: 1>one. To rename more 
messages within a single command, a space has to be 
entered for separating individual renamings. When we 
want to make an abstraction of the model, we can use 
a powerful feature of joining a group of processes into 
a virtual process. For example, the 1,2>onetwo com-
mand has to be entered in order to join processes with 
IDs 1 and 2 into a virtual process called onetwo. More 
virtual processes can be created within a single com-
mand using a space separator. The abstraction by join-
ing processes results in a smaller number of processes 
in the MSC as well as in a smaller number of messages 
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displayed, as all messages within each group of joined 
processes are internal for the virtual process and there-
fore not shown. Parameter hiding is especially useful 
when reviewing simulation trails of real systems, where 
messages often contain many parameters that lead to 
less transparent diagrams.

The same set of simulation view options is also avail-
able in the Spin Trail to MSC View, which is intended 
for converting a Spin simulation output trail to the 
standard MSC text format according to [13] in the same 
manner that the Export to MSC command does. In ad-
dition, Spin Trail to MSC View displays a list of created 
processes and messages transmitted between them 
during the simulation run.

During the simulation run the variable values and 
queue contents values are updated in two separate 
tables at the bottom of the Simulation View. The cur-
rent simulation step number is shown at the top of the 
tables.

6 Leader election example

Let us demonstrate some features of SpinRCP by con-
sidering a standard algorithm for leader election in a 
unidirectional ring. An efficient algorithm for solving 
this problem was published in [19]. The Promela model 
of this algorithm is taken from Spin Version 6 distribu-
tion. 

The leader election algorithm, when given a circular 
arrangement of N uniquely numbered processes in a 
unidirectional ring, determines the maximum number 
in a distributive manner. Communication occurs only 
between neighbours around the ring. All processes 
have the same program. They differ only by having dis-
tinct numbers (known only to the owners) in their local 
memory.

We suppose that N = 5. The Promela model contains 
two proctype definitions: init and nnode. The init pro-
cess first assigns a unique number for each of the five 
processes using non-deterministic choices. Then it cre-
ates five instances of a nnode process and assigns them 
their numbers. Next, the five nnode processes start to 
send and receive messages around the ring and pro-
cess them according to the algorithm. A process termi-
nates when it recognizes whether it is a leader (has the 
greatest number in a ring) or not.

A global variable nr_leaders is defined and initialised to 
zero in line 26. In lines 28 through to 31, four required 
properties for the algorithm are specified with the fol-
lowing LTL formulas:

p0: <> (nr_leaders > 0)
p1: <>[] (nr_leaders == 1)
p2: [] (nr_leaders == 0 U nr_leaders == 1)
p3: ![] (nr_leaders == 0) 

Such in-model specification of LTL properties has been 
supported since Spin Version 6. They state “positive” 
properties. Spin performs the negation automatically.

After a successful syntax check, eventual redundancy 
check and/or listing of a model symbol table, it is useful 
to become more acquainted with the model. For this 
purpose we can first generate and display a graphical 
representation of a state transition system (an automa-
ton) for each proctype and never claim in the model. 
By clicking the Automata View button in the Tool bar, 
the Automata View preference page (Fig. 4) opens and 
gives us the choice of selecting the type of files that 
will contain the automata. Let us suppose that we se-
lect the pdf file type (as in Fig. 4). Then the following 
sequence of commands is executed:

spin –o3 –a leader.pml
gcc-4 –o pan pan.c
pan –D | dot>leader-automata
dot –O –Tpdf leader-automata

The first command generates the verifier source code 
for the model leader.pml without statement merging, 
the second one compiles it, the third one writes state 
tables in dot-format to leader-automata file, and the 
last one creates a pdf file with the automaton for each 
proctype and never claim. Now a new selection dia-
logue is open and we can select, which automaton we 
want so see. Each selected automaton is opened in a 
system application that is assigned for a given file type. 
Let us suppose that we want to see the automata for 
nnode, p0, p1, and p2. To save space, all of them are 
placed together in Fig. 9.

In order to deepen understanding of the model and 
perhaps to find some early (simple) errors before ve-
rification, it is wise to perform random and/or interac-
tive simulation. In random simulation, Spin decides by 
itself, as to which one of the executable statements 
will be chosen at the points of non-deterministic selec-
tions. In interactive simulation, these decisions have to 
be made by a user. Fig. 8 shows the content of the con-
sole, the MSC Editor window, and the Simulation View 
on completion of the random simulation of the leader.
pml model. At the bottom of the Variable values table 
in the Simulation View it is evident that the nr_leaders 
variable is given the final value 1.

We may want to prove several interesting properties 
about this algorithm but one of the most important 
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seems to be the property that under no conditions 
should it be possible that more than one process de-
clare to be the ring leader. 

Firstly, let us check p0, i.e., that eventually the number 
of leaders is greater than 0. By clicking the Verifica-
tion tool button, the Verification preference page (Fig. 
6) is displayed. Since p0 specifies a liveness property, 
we must select the Liveness and Acceptance cycles ra-
dio buttons. Next, we select Apply never claim and as a 
manner of never claim specification select In-model LTL 
formula/claim name. Finally, we enter the name of the 
in-model LTL formula, p0, in the text field to the right 
of the label. As a result of verification, Spin returns that 
no error is found (i.e., the model fulfils the property p0) 
(see the Console in Fig. 2). But it is as yet unclear wheth-
er the algorithm will eventually always give one single 
leader. In order to verify this, we check if the model 
fulfils p1, i.e., if eventually the number of leaders will 
always be 1. Therefore, this time we enter p1 as the LTL 
formula name and run the verification again. Spin finds 
no errors, which means that the model fulfils p1. Now 

the only doubt about the correctness of the algorithm 
that still exists is whether the number of leaders goes 
from 0 to 1 directly with no intermediate numbers gre-
ater than 1. In order to find out the answer to this qu-
estion, we check whether the system fulfils p2 as well, 
i.e., the number of leaders is always 0 until the number 
of leaders is 1. The new verification run succeeds and 
thus p2 is verified. p3 specifies that the number of lea-
ders is not always zero. This means that eventually the 
number of leaders is not zero. Since this number can-
not be negative, p3 means exactly the same as p0, and 
is thus already verified. 

7 Conclusions

Using the Spin model checker on a huge model, au-
tomatically extracted from the SDL code of a real tel-
ecommunication industry product, encouraged us to 
develop an integrated development environment for 
Spin model checking called SpinRCP. SpinRCP is based 
on the Rich Client Platform technology. It is written in 
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Java as an Eclipse plug-in and then exported together 
with many other plug-ins as an Eclipse product. There-
fore, it runs as a stand-alone RCP application on any 
platform without the need for an installed Eclipse but 
nevertheless has many of the useful Eclipse functionali-
ties.

The whole application consists of 92 plug-ins. The Java 
source code for our plug-in called org.um.feri.spin.rcp 
is contained in 19 Java packages with a total of 84 files 
defining Java classes. The total amount of our source 
code is around 16,800 lines of Java code. The help con-
tents for SpinRCP is implemented in a separate plug-in 
that contains more than 60 html files with descriptions 
of individual help topics and many xml configuration 
files. Currently, SpinRCP runs on 32- and 64-bit Win-
dows operating systems. Platforms with other operat-
ing systems will be supported later. Once the website 
for SpinRCP is ready, it will be publicly announced.

Amongst the more important features of SpinRCP are 
the following ones: a user-friendly Promela editor with 
syntax colouring, code folding, keyword autocomple-
tion, and syntax error marking, running Spin verifi-
cation, random, guided, and interactive simulation, 
graphical MSC viewing, abstracting MSCs by joining 
some processes into an abstract process, conversion 
of Spin simulation output trail to a standard text file, 
which is readable by professional MSC viewers, display-
ing graphical automata representation of proctype 
definitions and never claims in a model. 

There are still a lot of ideas for improvements and new 
features. Let us mention just some of them: better Spin 
simulation output filtering, stepping back in time dur-
ing single step simulation, indication of the statement 
that is currently executed during a simulation run in 
the Promela source file, display of a process creation in 
the MSC Viewer, generation of state tables for proctype 
definitions and never claims, cleanup of temporary 
files, verification management, swarm support [15] for 
distributing a model checking task to more CPU cores 
or to a cloud of workstations, etc.

APPENDIX A

1 /*   Dolev, Klawe & Rodeh for leader election in 
unidirectional ring

2 *   `An O(n log n) unidirectional distributed algo-
rithm for extrema

3 *   finding in a circle,’  J. of Algs, Vol 3. (1982), pp. 
245-260

4 
5 *   Randomized initialization added -- Feb 17, 1997
6 */

7 
8 /* sample properties:
9 *   <>elected
10 *   <>[]oneLeader
11 *   []   (noLeader U oneLeader)
12 *   ![]   noLeader
13 *
14 *   ltl format specifies positive properties
15 *   that should be satisfied -- spin will
16 *   look for counter-examples to these properties
17 *   verify as:
18 *   spin -a leader.pml
19 *   cc -o pan pan.c
20 *   ./pan -N p0
21 *   ./pan -N p1
22 *   ./pan -N p2
23 *   ./pan -N p3
24 */
25 
26 byte nr_leaders = 0;
27
28 ltl p0   { <> (nr_leaders > 0) }
29 ltl p1   { <>[] (nr_leaders == 1) }
30 ltl p2   { [] (nr_leaders == 0 U nr_leaders == 1) }
31 ltl p3   { ![] (nr_leaders == 0) }
32
33 #define N 5 /* number of processes in the ring */
34 #define L 10 /* 2xN */
35 byte I;
36
37 mtype = { one, two, winner };
38  chan q[N] = [L] of { mtype, byte};
39
40  proctype nnode (chan inp, out; byte mynumber)
41 { bit Active = 1, know_winner = 0;
42   byte nr, maximum = mynumber, neighbourR;
43
44   xr inp;
45   xs out;
46
47   printf(„MSC: %d\n“, mynumber);
48   out!one(mynumber);
49  end:  do
50      :: inp?one(nr) ->
51        if
52        :: Active -> 
53          if
54          :: nr != maximum ->
55            out!two(nr);
56            neighbourR = nr
57          :: else ->
58            know_winner = 1;
59            out!winner,nr;
60          fi
61        :: else ->
62          out!one(nr)
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63        fi
64
65      :: inp?two(nr) ->
66        if
67        :: Active -> 
68          if
69          :: neighbourR > nr && neighbourR > maxi-

mum ->
70            maximum = neighbourR;
71           out!one(neighbourR)
72          :: else ->
73            Active = 0
74          fi
75        :: else ->
76          out!two(nr)
77        fi
78      :: inp?winner,nr ->
79        if
80        :: nr != mynumber ->
81          printf(„MSC: LOST\n“);
82        :: else ->
83          printf(„MSC: LEADER\n“);
84          nr_leaders++;
85          assert(nr_leaders == 1)
86        fi;
87        if
88        :: know_winner
89        :: else -> out!winner,nr
90        fi;
91        break
92    od
93 }
94
95 init {
96    byte proc;
97    byte Ini[6];/* N<=6 randomize the process  

   numbers */
98    atomic {
99
100       I = 1; /* pick a number to be assigned 1..N */
101       do
102       :: I <= N ->
103         if  /* non-deterministic choice */
104         :: Ini[0] == 0 && N >= 1 -> Ini[0] = I
105         :: Ini[1] == 0 && N >= 2 -> Ini[1] = I
106         :: Ini[2] == 0 && N >= 3 -> Ini[2] = I
107         :: Ini[3] == 0 && N >= 4 -> Ini[3] = I
108         :: Ini[4] == 0 && N >= 5 -> Ini[4] = I
109         :: Ini[5] == 0 && N >= 6 -> Ini[5] = I /* works  

        for up to N=6 */
110         fi;
111         I++
112       :: I > N -> /* assigned all numbers 1..N */
113         break
114       od;
115

116       proc = 1;
117       do
118       :: proc <= N ->
119         run nnode (q[proc-1], q[proc%N], Ini[proc-1]);
120         proc++
121      :: proc > N ->
122         break
123      od
124    }
125 }
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