
235

Original scientific paper

 MIDEM Society

Model Checking using Spin and SpinRCP
Zmago Brezočnik, Boštjan Vlaovič, Aleksander Vreže

Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

Abstract: Spin is one of the leading verification tools for the model checking of distributed systems. It is used over a broad spectrum
of applications where systems can be represented as asynchronously running processes. This paper provides an overview of the
concepts of model checking, the Spin model checker together with its input language Promela, and of the available graphical user
interfaces to Spin. In order to offer Spin users an integrated development environment for Spin, we have developed a SpinRCP. We
introduce its structure and demonstrate some of its features by considering a standard algorithm for leader election in a unidirectional
ring.

Keywords: formal verification, model checking, modelling, simulation, Promela, Spin, SpinRCP

Preverjanje modelov z uporabo orodij Spin in
SpinRCP
Izvleček: Spin je eno izmed vodilnih verifikacijskih orodij za preverjanje modelov porazdeljenih sistemov. Uporablja se za širok
spekter aplikacij, pri katerih lahko sisteme predstavimo kot asinhrono izvajajoče se procese. V članku podajamo kratek pregled
osnovnih pojmov o preverjanju modelov, preverjalniku modelov Spin, njegovem vhodnem jeziku Promela in razpoložljivih grafičnih
uporabniških vmesnikih za Spin. Da bi uporabnikom orodja Spin ponudili integrirano razvojno okolje za Spin, smo razvili SpinRCP.
Predstavljamo njegovo strukturo in prikažemo nekatere izmed njegovih značilnosti na primeru standardnega algoritma za izbiro vodje
v enosmernem obroču.

Ključne besede: formalna verifikacija, preverjanje modelov, modeliranje, simulacija, Promela, Spin, SpinRCP

* Corresponding Author’s e-mail: brezocnik@uni-mb.si

Journal of Microelectronics,
Electronic Components and Materials
Vol. 43, No. 4 (2013), 235 – 250

1 Introduction

The constantly increasing sizes and complexities of
contemporary ICT (Information and Communication
Technology) systems as well as demands for reduction
in costs and a shortening of time-to-market for a new
product, confront designers with harder and harder
tasks for ensuring the correct functioning of developed
systems. Nowadays, ICT systems are becoming ubiqui-
tous in our daily lives and we have to rely on their cor-
rectness. If any of them malfunction, it will be at least
annoying for its user but in the case of safety-critical
systems, such as for example systems in transport, med-
icine, industry, ecology, telecommunications, space
exploration, and the military, each undiscovered error
in the hardware or software may cause a lot of dam-
age, threatening the health or even the lives of people.
Let us recall some dramatic examples. Between 1985
and 1987 four cancer patients died and two were seri-
ously injured following incorrect behaviour (100-times
radiation overdosing) of the Therac-25 anti-tumour ir-

radiating machine. The cause was a design error in the
control software. On 4th June 1996, the Ariane 5 rocket
changed trajectory and exploded 40 seconds after be-
ing launched on its first flight. The cause of failure was
a variable overflow during the conversion of a 64-bit
real number to a 16-bit integer. In 1997, a computer on-
board the Mars Pathfinder had to be reset often due
to an error in the algorithm for access of several pro-
cesses to a common computer bus. A design error in
the Intel Pentium floating point division algorithm in
1994 caused the loss of about 450 million dollars when
replacing faulty processors. Therefore, the reliability of
systems is a key issue in the system design process that
takes up the greatest part of the design time and ef-
fort. A very promising approach towards ensuring the
correctness of ICT systems is that of model checking.
Model checking is a formal verification method that
can automatically verify the desired behavioural prop-
erties of a given system through exhaustively exploring
all states of a system’s suitable model. One of the most
successful model checkers is Spin [1, 2]. Although it was

236

originally designed as a tool for protocol verification,
it is capable of model checking and simulating almost
any system consisting of asynchronously running pro-
cesses. Spin is a command line tool that accepts user
commands from a command line and also outputs the
results there. In order to ease Spin model checking,
some graphical user interfaces have appeared for Spin.
Two of them were developed at the Faculty of Electrical
Engineering and Computer Science at the University
of Maribor. In this paper we introduce the latest one
called SpinRCP.

Section 2 introduces the basic concepts of model
checking including its strengths and weaknesses. Sec-
tion 3 provides a short overview of Spin and its input
language called Promela. Section 4 gives an overview
of the currently available graphical user interfaces for
Spin. Section 5 introduces our new integrated devel-
opment environment (IDE) for Spin called SpinRCP.
The use of SpinRCP is demonstrated on the model of
an algorithm for leader election in a unidirectional ring
in Section 6. Section 7 draws together the concluding
remarks.

2 Model checking

Model checking is an automated technique that, given
the finite-state model of a system and a formal prop-
erty, systematically checks whether this property holds
for (a given state in) that model. A detailed explanation
of the model checking technique can be found in [3].
A schematic view of model checking is shown in Fig.
1. We can distinguish between three different phases
when applying model checking to a system: the mod-
elling, running, and analysis phases.

Figure 1: Schematic view of model checking.

In the modelling phase, a model of the system under
consideration has to be obtained. Models describe the

possible behaviours of systems in a precise and unam-
biguous manner. They are usually expressed as finite-
state automata that consist of a finite set of states and
a final set of transitions. Models can be created either
manually or automatically using a model extraction
tool. In both cases the model has to be described in
a description language used by the model checker.
Simple errors within the model can be found by simu-
lation prior to the model checking. Such inexhaustive
simulation can disclose errors in the model but it can-
not guarantee that the model is error-free. In order to
find any remaining subtle errors, we have to resort to
rigorous verification using model checking. The infor-
mal requirements for the system’s behaviour have to be
formalised into precise and unambiguous properties
using an adequate property specification language. A
kind of temporal logic is most often used. The model
checking process actually checks whether the sys-
tem description M is a model of a temporal logic for-
mula P. A temporal formula can express the behaviour
of a system over time. It allows the specifying of rele-
vant system properties regarding the following kinds:
functional correctness (does the system do what it
should?), safety (“something bad never happens”), live-
ness (“something good will eventually happen”), fair-
ness (does an event occur infinitely often under certain
conditions?), and real-time properties (does the system
act in due time?).

In the running phase the user has to set various options,
parameters, and directives for the model checker that
should be used for verification. Then, the model check-
er automatically checks the validity of the property un-
der examination in all states of the system model.

In the analysis phase the user has to evaluate the out-
come of model checking performed within the pre-
vious phase. There are three possible outcomes: the
specified property is either valid or violated in the giv-
en model, or the model turns out to be too large to fit in
the available computer memory or the model checking
run is unfinished within a reasonable amount of time. If
the property is valid, the next property can be checked
with a new run perhaps with different options, param-
eters, and/or directives. If the property is violated, a
counterexample is generated that can be analysed by
simulation. The counterexample guides the simula-
tion run across a path where the property is violated.
A thorough counterexample analysis can reveal the
cause of the violation. It may be a modelling error, a sys-
tem design error, or a property error. In the case of the
modelling error, the model does not reflect the design
of the system. The model has to be corrected and all
the properties have to be checked again. In the case of
the system design error, the system does not behave
as required and has to be corrected. The last possible

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

237

cause is that the property does not reflect the informal
requirement for the system behaviour. This implies a
revision of the property and a new verification for this
property. The designed system is verified with respect
to the given properties if and only if all of them have
been proven valid. Whenever the model is too large to
be handled within the available amount of computer
memory or within a reasonable time, the model has to
be reduced using different abstractions.

Model checking has many strengths including the fol-
lowing ones: it is a general technique that is applicable
to a wide range of systems (e.g., protocols, hardware,
software), it allows partial verification (only the more
relevant properties are checked), it is nothing harder
to find less likely errors than the more likely ones, it
provides a counterexample in case a property is invali-
dated, it is an automatic technique and software tools
exist, or it is more and more accepted in the industry.

On the other hand, it also has some weaknesses: it is
mainly appropriate for control-intensive applications
and much less suitable for data-intensive applications,
it is applicable only to final-state systems, it verifies a
system model, and not the system itself, its results are
only as good as the system model, it checks only given
properties and provides no guarantee about the com-
pleteness of the results, it is faced with state-space ex-
plosion, or it cannot handle parameterised systems.

Despite these weaknesses it is a fact that model check-
ing is an effective technique for exposing potential de-
sign errors and thus increases the quality of a system
design.

3 Spin and Promela

This section provides a short introduction to the input
language of Spin called Promela and the main features
of Spin.

3.1 Short Introduction to Promela

Promela (Process or Protocol Meta Language) is a
language for describing finite state automata. It is not
intended to be an implementation language but a
system description language that is aimed at facilitat-
ing the searches for good abstractions of systems’ de-
signs. The language is oriented towards the modelling
of process coordination and synchronisation, and not
to computation. The reason is simple. Promela is not a
programming language but a verification modelling
language. Promela language reference can be found in
[1].

A Promela model consists of processes, variables, and
channels. It corresponds to a finite state transition sys-
tem, hence all objects in Promela are bounded. The
processes are global objects, whilst the variables and
channels may be declared either as global or local to a
process. A new inline or block scope for variables has
been introduced since Spin Version 6.

The processes are instantiations of proctype declara-
tions and define parts of the system’s behaviour. A
proctype consists of a name, a list of formal parameters,
local variable declarations, and a body. The body con-
sists of a sequence of statements. A process executes
concurrently with all other processes. It communicates
with other processes using either global (shared) vari-
ables or channels. There may be several processes of
the same type. Each process has its own local state that
consists of a process counter (current location within
the proctype) and the values of the local variables. Pro-
cesses can be created within any process at any point
of execution using the run statement. They can also be
created by adding the keyword active in front of the
proctype declaration. A so-called init process becomes
active in the initial state of the system. It serves to ini-
tialise other processes and global variables.

Promela has nine basic (integer) variable types: bit or
bool (1 bit), byte (8 bits), chan (8 bit), mtype (8 bit), pid
(8 bit), short (16 bits), int (32 bits), unsigned (1≤n<32
bits). More complex types (records) can be composed
from the basic types with the keyword typedef.

Message channels in Promela are used to model the
exchange of data between processes. Channels can
be either asynchronous or synchronous (rendezvous).
Asynchronous channels are queues or buffers, and
can store a finite number of messages. Synchronous
channels have a length of zero. Channel declaration
is introduced by the type name chan followed by the
channel name, length of the channel queue (channel
capacity) and the structure of the messages, which can
be stored in the channel as a comma-separated list of
type names.

The body of a process consists of statements that ex-
ecute sequentially. There are two kinds of statements:
statements that never block and statements that may
block. An expression is also a statement and is executa-
ble if it evaluates to non-zero but is blocked otherwise.
No other statement within a process may be executed
until the statement evaluates to true, which may result
from a variable assignment or a received message, for
example. Statements if and do consist of one or more
option sequences. An option sequence begins with a
guard, and if the guard evaluates to true, the option
sequence is selected for execution. If more than one

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

238

guard is true, the selection of the statement to be ex-
ecuted is non-deterministic. If no choice is executable,
the statement is blocked. The only difference between
these two statements is that after the execution of the
selected statement, a do statement repeats the choice
selection but an if statement ends the execution. The
always executable break statement exits a do loop.

There are four ways to express correctness properties
in Promela: assertions, trace assertions, labels, and nev-
er claims. Assertions express invariants. If an invariant
is false at the point where the assertion occurs, Spin
reports an error. Trace assertions perform similarly to
channels. Labels can be of type accept, end, and pro-
gress. They mark the states in a process and have a
special meaning when Spin is run in verification mode.
The accept state labels are normally used only in never
claims that are mentioned below. The verifier can find
all cycles that do pass through a state with an accept
label. The end label marks a valid end state that is not at
the end of a process’ code (i.e., the closing curly brace
in the corresponding proctype body). The progress la-
bel marks a statement in a Promela model that accom-
plishes something desirable and thus makes progress.
The never claim expresses behaviour that should never
occur. Usually, it is automatically generated from a lin-
ear temporal logic (LTL) formula.

3.2 Principles of Spin

Spin is one of the most often used and successful mod-
el checkers. It was written by Gerard J. Holzmann at Bell
Labs [1, 2]. The software has been available freely since
1991, and continues to evolve. The latest version of
Spin is Version 6.2.5 issued on 4th May 2013. Spin down-
load distributions and a lot of additional tools and rel-
evant information can be found at the Spin home page
http://spinroot.com/. Spin beginners’ tutorial and prac-
tically-oriented introduction to the principles of the
Spin model checker are available in [4] and [5], respec-
tively. The Spin model checker takes a Promela model
as an input. Hence where its name is derived from.
Spin is an acronym for Simple Promela Interpreter. In
2001, the Association for Computing Machinery (ACM)
recognized Dr. Gerard Holzmann by a prestigious ACM
Software System Award for Spin.

Let us suppose that a Promela model M has n pro-
cesses, defined by proctype declarations. Spin first
transforms them into finite state automata A1, A2, …,
An. Then, it creates an asynchronous product of all au-
tomata. The states of this product automaton are called
the state space or the reachability graph of the model.
Next, consider that a property that has to be satisfied
by a model, is expressed by an LTL formula f. Spin first
generates a never claim for the negated formula ¬f and

converts it into a corresponding Büchi automaton, B.
Spin can check if M satisfies f by computing the global
system automaton S

We use the operator ∏ to represent an asynchronous
product of multiple component automata, and ⊗ to
represent the synchronous product of two automata
[1]. The automaton S is now analysed for its acceptance
properties. If S has accepting ω-runs (i.e., a certain state
in the set of its final states is visited infinitely often in
the run), then formula f can be violated (and ¬f can be
satisfied). If no accepting ω-runs are found, then the
system is considered valid. In this way liveness proper-
ties are formulated. Informally, a liveness property says
that “something good will eventually happen”. Spin
works the other way round. It tries to find a (infinite)
loop in which the “good things do not happen”. If there
is no such loop, the property is satisfied. Another class
of properties is safety properties (e.g., invariance, dead-
lock, livelock, unreachable states). Informally, a safety
property says that “something bad never happens”.
Spin tries to find an execution path leading to the “bad”
thing. If there is no such execution path, the property
is satisfied.

For each model to be verified, Spin first generates a C
verifier program, which can then be compiled to the
executable verifier called pan. When it finds an error, a
counterexample is generated, which can be used in a
guided simulation that replays the execution path that
violated the property. Random and interactive simula-
tion is also available. They can be used for the sake of
early detection of (simple) errors before verification.

Spin has several optimisation algorithms to make the
verification process more effective (e.g., partial order
reduction, statement merging, state compression, bit-
state hashing, hash-compact) [1]. In addition, a slicing
algorithm gives the user hints of what can be “thrown
away” in a model description in order to reduce space
and time consumption.

3.3 Spin Application Domains

Due to the nature of Promela, it can be used to mod-
el many different kinds of systems of asynchronously
(and synchronously) communicating processes [6].
Thus, Spin that takes a Promela model as its input, has
been used for a wide range of different applications:
protocol design and verification, feature interaction,
safety critical system verification, embedded and re-
active system verification, hardware circuit modelling,
hardware/software codesign, finding solutions for op-

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

239

timising problems, verifying contracts and guidelines,
verifying business processes, modelling telephone
switching systems, modelling multimedia presenta-
tions, modelling routers and network traffic, modelling
operating system kernels, scheduling and plan execu-
tion, verifying bytecode, modelling genes, etc.

4 Graphical environments for Spin

The most basic way of using Spin is textual. A user en-
ters the commands at the command line and Spin out-
puts are printed on standard output afterwards. Such
an approach to model checking could be difficult and
discouraging especially for newcomers who are not
yet well acquainted with Spin commands. Of course,
the availability of a user-friendly graphical interface
to Spin is of a considerable benefit for skilled users as
well. In order to accomplish these needs, several differ-
ent graphical interfaces or environments for Spin have
been developed. This section provides a brief over-
view of Xspin, jSpin, Eclipse Plug-in for Spin, iSpin, and
EpiSpin. In the next section we present our SpinRCP.

4.1 Xspin

Xspin [1] was the first graphical interface to Spin. The
interface runs independently from Spin itself. It gen-
erates the proper Spin commands in the background,
based on user menu selections and button clicks, then
obtains the Spin output and wherever possible at-
tempts to generate a graphical representation of this
output. Xspin interface was very suitable for dealing
with small models, but coping with larger ones was
much more difficult due to the lack of syntax colour-
ing and code folding. In addition, the opening of a
separate window for each task during investigation of
a model was inconvenient.

Xspin was written in Tcl/Tk script language. The last
version of Xspin was Xspin Version 5.2.5 from 17th April
2010. Since then it has no longer been supported. In
Spin Version 6 it was superseded by iSpin.

4.2 jSpin

jSpin [7] is an alternative graphical user interface for
the Spin model checker. It was developed by M. Ben-Ari
primarily for pedagogical purposes. It is written in Java.

jSpin’s interesting part is its SpinSpider component,
which is very useful for demonstrating the properties
of concurrent programming. As in the case of Xspin,
syntax colouring and code folding are missing. In con-
trast to Xspin, message passing between communicat-
ing processes is displayed only in textual form.

4.3 Eclipse Plug-in for Spin

In [8, 9] we introduced a new approach for automat-
ic model extraction and applied it in our tool called
sdl2pml. It can generate a Promela model of a system
specified in SDL. The tool was tested on the implemen-
tation of an ISDN User Adaptation (IUA) protocol, which
is part of the SI3000 softswitch. The specification was
developed by Iskratel d.o.o., which is the largest Slo-
venian telecommunication equipment developer. The
generated Promela model is huge with its 79,281 lines
of code. We didn’t have any suitable Promela editor
that would be suitable for such large models. There-
fore, we decided to create an Eclipse Plug-in for Spin
with a user-friendly Promela editor that includes syntax
colouring and code folding and similar capabilities for
running Spin syntax check, simulation and verification
as Xspin [10, 11]. In order to ease analyses of extremely
long Spin simulation trails (e.g., Spin trail of the simple
call with the use of IUA protocol consists of 55,371 lines
of text and contains 21 processes that communicate
using 261 messages) we have developed a Spin Trail to
Message Sequence Chart (MSC) tool called st2msc [12].
It converts a Spin simulation trail into a standard MSC
textual representation according to standard Z.120
[13]. Professional telecommunication design tools such
as ObjectGEODE can read this MSC representation and
display message sequence charts in graphical form.

The Spin Plug-in is written in Java and uses numerous
other plug-ins available within the Eclipse environ-
ment. It has proved to be very useful when working
with large models but also has some shortcomings: an
interactive simulation is not implemented, better filter-
ing of the Spin simulation output trail is missing, and
graphical display of MSCs is only possible with the use
of external tools.

4.4 iSpin

iSpin [14] is the graphical user interface that has re-
placed Xspin since Spin Version 6.0.0. It was provided
by the Spin author, G. J. Holzman, and is included in
each new Spin release. Just like Xspin, iSpin is imple-
mented using the Tcl programming language and the
Tk graphical user interface toolkit.

iSpin is a good upgrade of Xspin and is much more us-
er-friendly, because all operations display their results
in different areas of a single window and don’t open
new windows as in the case of Xspin. iSpin is the only
graphical user interface to Spin that supports a swarm
verification run [15] that distributes verification loads
amongst more computing cores or platforms. Syntax
colouring and code folding would be welcome for the
editing of large Promela models.

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

240

4.5 EpiSpin

EpiSpin [16], introduced by de Vos et. al., is an Eclipse
plug-in for editing Promela models and starting Spin
verification and simulation runs. It includes its own er-
ror checker that instantaneously feedsback on syntax
and semantic errors, syntax highlighting, code folding,
reference resolving, and a graphical tool for displaying
the static relationships between channels, and process-
es and global variables. EpiSpin has been built using
the Spoofax language workbench.

This tool is primarily oriented towards providing vari-
ous editor services for editing Promela models and a
dot graph that shows how model processes can com-
municate using channels and global variables.

5 SpinRCP IDE

Motivated with good responses to our Eclipse Plug-
in for Spin and suggestions for the integration of the

full functionality of the then graphical interface Xspin
into Eclipse, we decided to develop an integrated de-
velopment environment that will facilitate entering
new or reviewing extracted Promela models from an
existing software code, simple parameters choosing
for individual operations on the model, running Spin
verification and simulation, and keeping records of file
versions [17]. This new environment will remove some
disadvantages of Eclipse Plug-in for Spin, particularly
the lack of interactive simulation implementation and
the need for external tools to display MSCs graphically.

For the implementation of this environment we select-
ed the Eclipse Rich Client Platform (RCP) technology.
RCP is the minimum set of plug-ins needed to build
a rich client application. It allows us to quickly build a
professional-looking application, with native look-and-
feel, on multiple platforms.

5.1 SpinRCP architecture

After launching the application, one single window
entitled SpinRCP with its version number opens. Ac-

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

Figure 2: SpinRCP Workbench during verification.

241

cording to the terminology of Eclipse it is called a
Workbench. A Workbench consists of perspectives,
views and editors. A perspective is a group of views
and editors in the Workbench window. A view and an
editor are visual components within the Workbench.
In SpinRCP, there are many different views (e.g., Model
Navigator, Console, Simulation, Spin Trail To MSC, CVS
Repositories, ...) and only two editors (Promela Editor as
a special case of Text Editor and MSC Viewer as a special
case of Graphical Editor). Some features are common to
both views and editors. We use the term “part” to mean
either a view or an editor. Parts can be active or inac-
tive, but only one part can be active at any one time.
The active part is the one where the title bar is high-
lighted. Using a simple drag-and-drop operation you
can relocate and/or resize any part and thus reform the
SpinRCP perspective at your will. The outlook of Work-
bench with SpinRCP perspective during verification is
shown in Fig. 2. It consists of the Menu bar, the Tool bar,
the Model Navigator View, the Promela Editor, and the
Console View. Below we present in short these parts of
the Workbench.

5.2 Menu bar

At the top of the Workbench there is a Menu bar with
five menus already known from Eclipse: File (to open,
save, or print a file, and exit the application), Edit (to
undo or redo an editing action, to cut, copy, paste, or
delete a selected text, and to search for and replace a
specific text in the Promela Editor or the Console), Run
(to run any of the SpinRCP tools), Window (to show any
of the available views, to open, save, or reset a perspec-
tive, to set general or Spin preferences), Help (to obtain
installation details about SpinRCP, to browse help con-
tents including the possibility of printing the selected
topics without or with all subtopics, allows locating lo-
cal topics, remote documents, and other documents
given a search query, gives context-sensitive help, and
displays a list of key bindings).

5.3 Tool bar

Below the Menu bar is the Tool bar. The first three Tool
bar icons (Save, Save All, and Print…) are shortcuts of
the equally named operations from the File menu. They
are followed by eight shortcut buttons for launching a
specific SpinRCP action. Syntax Check uses Spin –a op-
tion for performing a thorough model syntax check and
generates the source C program for a model-specific
verifier. Redundancy Check uses Spin –A option to ap-
ply a property-based slicing algorithm for the model,
which can detect eventual redundancies in the model
and generate suggestions on how the model could be
revised in order to use less memory. Symbol Table uses
the Spin –d option to produce symbol table information

for the Promela model. The information for each Prome-
la object depends on its type. Simulation opens the
Simulation preference page, where the user can select
the type of simulation (random, guided, interactive) and
some simulation parameters. Then the simulation view
opens and the user can start the selected type of sim-
ulation. Verification opens the Verification preference
page, where the user can select and/or enter many basic
and advanced verification options and then verification
starts. Automata View opens the Automata View prefer-
ence page, where the user can select in which graphical
format the automata should be displayed. Ten different
file formats are currently available. SpinRCP uses options
–o3 and –a to generate the verifier source C code, then
compiles it to pan and runs pan using run-time option
–D. This option generates state tables for each proctype
and each never claim in the format accepted by the dot
tool from Graphviz [18]. These state tables are redirected
to a text file. Next, the dot tool transforms this text file to
a set of files (one file for each proctype or never claim)
with the previously selected graphical format. Then,
a dialogue appears, where the proctype or the never
claim to be displayed can be selected. Finally, a system
program, assigned to a given file type is opened and the
selected automaton is displayed. In the Simulation View,
where the MSC Viewer is active, two other shortcut but-
tons are enabled – Export to MSC and Import trail. By
clicking the first one the currently displayed MSC in the
MSC Viewer is exported to a selected file with standard
MSC textual representation according to standard Z.120
[13] using the st2msc tool introduced already in [12]. By
clicking the second button the Spin simulation trail in a
selected file is read-in and the MSC is displayed in the
active MSC Viewer.

5.4 Model Navigator

The Model Navigator View is designed to create a new
file, folder, or project resource, an untitled text file, or
import resources from the local file system into an ex-
isting project. The resources on local disk are represent-
ed in a tree structure. If a user double-clicks a file, an
appropriate internal editor or external program opens
this file. For Promela files of type pml and simulation
trail files of type out the Promela Editor and MSC View-
er Editor are default editors, respectively. On the Spin-
RCP General preference page either an internal editor
or an external program can be associated for each file
type. Using the Project wizard within the Model Navi-
gator we have to generate a project, which is actually
a place, where our models and other files, produced
by the SpinRCP IDE, will be stored. Within a wizard for
the creation of a new Promela model, a user has to se-
lect a project (that is a container where the model is
to be stored) and enter the file name of type pml. The
Promela Editor opens a new file with a given name and

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

242

automatically inserts an empty init process so that the
user doesn’t need to do it manually.

5.5 Promela Editor

We have developed the Promela Editor already for our
Eclipse Plug-in for Spin [10, 11]. In SpinRCP it is almost
unchanged. For ease of viewing and editing models
the following features are available: syntax highlight-
ing, code folding, content assist, and marking a place
of a syntax error.

Syntax highlighting is a feature of Promela Editor that
displays the text of the source file in different colours
according to the category of terms. Highlighting does
not affect the meaning of the text itself; it is only in-
tended for human readers. The colours for different
groups of reserved words, comments, and default text
can be selected on the Promela Editor preference page.
The default colours for text and comments are black
and blue, respectively. According to the Promela lan-
guage reference in [1], Promela reserved words can be
grouped into seven sections: Meta Terms, Declarators,
Control Flow Constructors, Basic Statements, Prede-
fined Functions and Operators, Embedded C code, and
Omissions. All the reserved words in a section will be
displayed in the same colour. In each section a different
colour can be set. By default, reserved words from all
seven sections are displayed in the same (violet) colour.
By default, the colours are enabled. They can also be
disabled by deselecting the Enable colours checkbox.

Code folding allows the user to selectively hide or dis-
play sections of a currently-edited file. This allows the
user to manage large amounts of text whilst viewing
only those subsections of the text that are specifically
relevant at any given time. Code folding is possible be-
tween an opening curly bracket “{“ and closing curly
bracket “}”. This feature is commonly used to hide/dis-
play the bodies of large proctype declarations and is
essential for studying the specifications in real systems.

Content assist or autocomplete is a functionality pro-
vided by SpinRCP that helps the user to write code
faster. A user can just type in the first letter(s) of the re-
served word and then press Ctrl+Space to be offered
all the choices that match the entered letters that are
valid for the current context. He/she simply selects the
wanted word. This help is especially useful for a begin-
ner who is not yet well acquainted with Promela syntax.

The Promela Editor uses a mechanism for marking syn-
tax errors. If the Spin syntax checker detects a syntax
error within Promela source code, SpinRCP parses its
error message and finds out the line number where the
error occurred. The Promela Editor marks this line with

an error icon. A detail reason for the displayed syntax
error is shown in the Console and in the Problems View.

Many instances of the Promela Editor containing
Promela (or other) files can be opened simultaneously
but only one editor can be active at any one time. The
active editor is the one, the title of which is highlighted.

5.6 Console

Console is a view that is used for displaying the syn-
thesised Spin commands and Spin textual outputs for
all actions on the model. Below the console title bar
a header line is displayed that consists of four strings:
“Spin” – the parent application that is executing, the
name of the action that is being performed (e.g., Veri-
fication, Random Simulation, etc.) in square brackets,
the full path to the file containing the Promela model,
over which the action is being performed, the exact
date and time at which the action started.

All outputs for the same type of action (e.g., verifica-
tion) and the same model are written to the same con-
sole. Thus, the number of created consoles at any time
is equal to the sum of the number of different actions
that have been performed on each model so far. Filter-
ing of Spin outputs is helpful for a user who can now
gather the results that are important to him/her much
more easily. The contents of any console can also be
cleared or copy-pasted in the whole or just within a se-
lected area anywhere else for later use.

5.7 Preference pages

SpinRCP has several preference pages on which the
user can set values to different kinds of variables. The
following preference pages are available:
- General,
- Spin,
- Automata View,
- MSC Viewer,
- Promela Editor,
- Simulation,
- Verification.

In the General preference page a subset of the more
common general preferences from Eclipse can be set
(appearances of colours and fonts, editors file associa-
tions, different text editors’ options, keys’ bindings, per-
spectives, and workspace options, etc.).

Spin preference page (Fig. 3) is used to set paths to
external tools. These paths have to be set before the
first usage of SpinRCP. Spin is the main external tool for
which the SpinRCP was developed at all. Therefore, it
is mandatory to set the path to Spin. Since Spin gen-

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

243

erates a verifier for each model being checked as C
source code, which has to be compiled to an execut-
able code, we need an installed C compiler. We use gcc-
4 from Cygwin environment and that is why we have
set the path to gcc-4 C compiler. The conversion of a
Spin textual simulation output trail to MSCs is done by
the st2msc tool [12]. Therefore, the absolute path to the
file st2msc.jar has to be set. Of course, the path to the
Java Runtime Environment that runs st2msc.jar has to
be set, too. A path to the Graphviz dot tool is neces-
sary if we want to generate graphs of the processes and
never claims. If the PATH environment variable of the
computer system includes paths to Spin, C compiler,
Java, and dot, we don’t need to enter their absolute
paths but just their names as shown in Fig. 3. Paths with
spaces are also allowed. SpinRCP recognises such paths
and encloses them in double quotes.

Figure 3: Spin preference page.

The Automata View preference page (Fig. 4) gives the
user a choice to select a type of files that will contain
the computed state transition system for all processes
in the model and all never claims, and whether or not
the automata view dialogue will be shown after graph
creation. Currently the following file types are support-
ed: bmp, dot, eps, fig, gif, jpg, pdf, png, svgz, and tif.

On the MSC Viewer preference page the MSC refresh
interval can be set (default is 50 ms). In addition, it can
also be set as to whether the message parameters will
be shown in MSC diagrams or not.

The Promela Editor preference page is used to select
colours for different categories of terms in Promela
source file or disable colours.

The Simulation preference page (Fig. 5) offers the user
the possibility of selecting the Spin simulation mode

(random, guided, or interactive). A seed value can
be set for random simulation. Either the default Spin
trail file with the extension .trail added to the original
Promela source file or any other Spin trail file can be
selected for guided simulation. The number of initial
steps skipped (default 0), the maximum number of
steps (default 10000), and how a full queue is simulated
(either blocks or loses new messages), is also selected
on this page.

The most complex preference page in SpinRCP is the
Verification preference page (Fig. 6 and Fig. 7). In the
upper part, the user can export current verification pa-
rameters (verification profile) to an xml file and import
or reload a previously saved verification profile. Verifi-
cation options are accessible below in two tabs: Basic
Options and Advanced Options.

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

Figure 4: Automata View preference page

Figure 5: Simulation preference page.

244

In the Basic Options tab (Fig. 6), a user can select a cor-
rectness property to be proved (either safety or live-
ness) with several additional options, the search mode
(exhaustive, bitstate hashing or hash-compact), how a
full queue behaves during verification (either blocks or
loses new messages), the explicit use of user-entered
compile-time and run-time parameters that supersede
the clicked options and the elsewhere entered parame-
ters, and how a never claim (if any) is specified. A never
claim can be specified in four different ways. In the first
one, which is a default, a never claim or an LTL formula
is specified in the model itself. In the text field right to
the label the name of the never claim/LTL formula to be
checked against the model has to be written. Such an
in-model never claim specification has been possible
since Spin Version 6. The second method is to enter an
LTL formula in the text field. The third one is to enter or
select the file name, in which the single-line LTL formu-
la is written. The last way to specify a never claim is to
enter or select a file name with a contained never claim.

Figure 6: Basic options on the Verification preference
page.

In the Advanced Options tab (Fig. 7) it is possible to
enter several advanced verification parameters (the
amount of the available physical memory in mega-
bytes, the estimated state space size, the maximum
search depth, number of hash-functions in bitstate
mode, extra verifier generation options, extra compile-
time directives, and extra run-time options) and select
some error-trapping and verification run type options.

5.8 MSC Viewer

The MSC Viewer is used for a graphical display of the
Spin simulation output trail. Otherwise, as in the case
of [10, 11], external (often commercial) tools would be
needed to accomplish this (e.g., ObjectGEODE). The
MSC Viewer is shown in the central part of Fig. 8. It works
in two different modes. In the first one it displays an al-
ready generated simulation trail from a file of type out.
This kind of MSC display can be achieved either by a
double-click on an out file in the Model Navigator view
or by a click on the Import trail button in the Tool bar
when the Simulation View is active. The second mode
of displaying the MSC is “on-the-fly” when the simula-
tion is running. In this mode, two Java threads run in
parallel: a Spin simulation thread and an MSC refresh-
ing thread. The simulation thread executes the Spin
simulation (random, guided, or interactive). Simulation
output is parsed line by line and for each new parsed
line the list of created processes and messages that
have been sent and received up to this time is updated.
In parallel, the MSC refreshing thread is refreshing the
MSC displayed in MSC Viewer. If any new process or any
new message has been added to the corresponding
list since the last screen refresh, the MSC is changed
accordingly. The MSC Viewer is implemented using the
Graphical Editing Framework (GEF) that provides tech-
nology for creating rich graphical editors and views for
the Eclipse Workbench UI.

Figure 7: Advanced options on the Verification prefer-
ence page.

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

245

5.9 Simulation View

The Simulation View is shown after the Simulation but-
ton in the Tool bar has been pressed and the Simulation
preference page confirmed (right side of Fig. 8). At the
top of the view there is a label showing the previously-
selected simulation type including the Promela model
filename and two simulation buttons, Single Step and
Run. By clicking the Single Step button, MSC is being
drawn message by message (if any message is sent and
received in the model at all). Clicking on the Run but-
ton periodically updates the MSC each time the MSC
refresh interval expires as given on the MSC Viewer
preference page.

Several options to adapt the display of MSCs are avail-
able below the simulation buttons. The user can do the
following:
- select a subset of messages that will be ignored

and not displayed in the MSC diagram,
- select a subset of messages that will be displayed

in the MSC diagram,
- rename selected messages,
- join two or more processes into a new virtual pro-

cess, and
- select whether to show or hide message param-

eters.

The first two options are very useful if we have to ex-
plore simulation traces of large models with many pro-
cesses and a large number of messages, and can thus
concentrate only on those that we are interested in.
Selected messages are entered using their space-sep-
arated IDs. The need for renaming of messages appears
when our sdl2pml tool [8, 9] has extracted a very large
Promela model from an SDL code of a real product.
Since Promela allows a maximum of 255 different mes-
sage types, the sdl2pml tool presents messages using
integers. It is very difficult to track a simulation trail if
messages are represented by numbers instead of hav-
ing sensible names. The renaming of messages helps,
in that the MSC is more understandable. For example,
to rename a message with ID 1 to one, the following
command has to be entered: 1>one. To rename more
messages within a single command, a space has to be
entered for separating individual renamings. When we
want to make an abstraction of the model, we can use
a powerful feature of joining a group of processes into
a virtual process. For example, the 1,2>onetwo com-
mand has to be entered in order to join processes with
IDs 1 and 2 into a virtual process called onetwo. More
virtual processes can be created within a single com-
mand using a space separator. The abstraction by join-
ing processes results in a smaller number of processes
in the MSC as well as in a smaller number of messages

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

Figure 8: SpinRCP Workbench during simulation.

246

displayed, as all messages within each group of joined
processes are internal for the virtual process and there-
fore not shown. Parameter hiding is especially useful
when reviewing simulation trails of real systems, where
messages often contain many parameters that lead to
less transparent diagrams.

The same set of simulation view options is also avail-
able in the Spin Trail to MSC View, which is intended
for converting a Spin simulation output trail to the
standard MSC text format according to [13] in the same
manner that the Export to MSC command does. In ad-
dition, Spin Trail to MSC View displays a list of created
processes and messages transmitted between them
during the simulation run.

During the simulation run the variable values and
queue contents values are updated in two separate
tables at the bottom of the Simulation View. The cur-
rent simulation step number is shown at the top of the
tables.

6 Leader election example

Let us demonstrate some features of SpinRCP by con-
sidering a standard algorithm for leader election in a
unidirectional ring. An efficient algorithm for solving
this problem was published in [19]. The Promela model
of this algorithm is taken from Spin Version 6 distribu-
tion.

The leader election algorithm, when given a circular
arrangement of N uniquely numbered processes in a
unidirectional ring, determines the maximum number
in a distributive manner. Communication occurs only
between neighbours around the ring. All processes
have the same program. They differ only by having dis-
tinct numbers (known only to the owners) in their local
memory.

We suppose that N = 5. The Promela model contains
two proctype definitions: init and nnode. The init pro-
cess first assigns a unique number for each of the five
processes using non-deterministic choices. Then it cre-
ates five instances of a nnode process and assigns them
their numbers. Next, the five nnode processes start to
send and receive messages around the ring and pro-
cess them according to the algorithm. A process termi-
nates when it recognizes whether it is a leader (has the
greatest number in a ring) or not.

A global variable nr_leaders is defined and initialised to
zero in line 26. In lines 28 through to 31, four required
properties for the algorithm are specified with the fol-
lowing LTL formulas:

p0: <> (nr_leaders > 0)
p1: <>[] (nr_leaders == 1)
p2: [] (nr_leaders == 0 U nr_leaders == 1)
p3: ![] (nr_leaders == 0)

Such in-model specification of LTL properties has been
supported since Spin Version 6. They state “positive”
properties. Spin performs the negation automatically.

After a successful syntax check, eventual redundancy
check and/or listing of a model symbol table, it is useful
to become more acquainted with the model. For this
purpose we can first generate and display a graphical
representation of a state transition system (an automa-
ton) for each proctype and never claim in the model.
By clicking the Automata View button in the Tool bar,
the Automata View preference page (Fig. 4) opens and
gives us the choice of selecting the type of files that
will contain the automata. Let us suppose that we se-
lect the pdf file type (as in Fig. 4). Then the following
sequence of commands is executed:

spin –o3 –a leader.pml
gcc-4 –o pan pan.c
pan –D | dot>leader-automata
dot –O –Tpdf leader-automata

The first command generates the verifier source code
for the model leader.pml without statement merging,
the second one compiles it, the third one writes state
tables in dot-format to leader-automata file, and the
last one creates a pdf file with the automaton for each
proctype and never claim. Now a new selection dia-
logue is open and we can select, which automaton we
want so see. Each selected automaton is opened in a
system application that is assigned for a given file type.
Let us suppose that we want to see the automata for
nnode, p0, p1, and p2. To save space, all of them are
placed together in Fig. 9.

In order to deepen understanding of the model and
perhaps to find some early (simple) errors before ve-
rification, it is wise to perform random and/or interac-
tive simulation. In random simulation, Spin decides by
itself, as to which one of the executable statements
will be chosen at the points of non-deterministic selec-
tions. In interactive simulation, these decisions have to
be made by a user. Fig. 8 shows the content of the con-
sole, the MSC Editor window, and the Simulation View
on completion of the random simulation of the leader.
pml model. At the bottom of the Variable values table
in the Simulation View it is evident that the nr_leaders
variable is given the final value 1.

We may want to prove several interesting properties
about this algorithm but one of the most important

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

247

seems to be the property that under no conditions
should it be possible that more than one process de-
clare to be the ring leader.

Firstly, let us check p0, i.e., that eventually the number
of leaders is greater than 0. By clicking the Verifica-
tion tool button, the Verification preference page (Fig.
6) is displayed. Since p0 specifies a liveness property,
we must select the Liveness and Acceptance cycles ra-
dio buttons. Next, we select Apply never claim and as a
manner of never claim specification select In-model LTL
formula/claim name. Finally, we enter the name of the
in-model LTL formula, p0, in the text field to the right
of the label. As a result of verification, Spin returns that
no error is found (i.e., the model fulfils the property p0)
(see the Console in Fig. 2). But it is as yet unclear wheth-
er the algorithm will eventually always give one single
leader. In order to verify this, we check if the model
fulfils p1, i.e., if eventually the number of leaders will
always be 1. Therefore, this time we enter p1 as the LTL
formula name and run the verification again. Spin finds
no errors, which means that the model fulfils p1. Now

the only doubt about the correctness of the algorithm
that still exists is whether the number of leaders goes
from 0 to 1 directly with no intermediate numbers gre-
ater than 1. In order to find out the answer to this qu-
estion, we check whether the system fulfils p2 as well,
i.e., the number of leaders is always 0 until the number
of leaders is 1. The new verification run succeeds and
thus p2 is verified. p3 specifies that the number of lea-
ders is not always zero. This means that eventually the
number of leaders is not zero. Since this number can-
not be negative, p3 means exactly the same as p0, and
is thus already verified.

7 Conclusions

Using the Spin model checker on a huge model, au-
tomatically extracted from the SDL code of a real tel-
ecommunication industry product, encouraged us to
develop an integrated development environment for
Spin model checking called SpinRCP. SpinRCP is based
on the Rich Client Platform technology. It is written in

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

Figure 9: Automata for nnode, p0, p1, and p2.

248

Java as an Eclipse plug-in and then exported together
with many other plug-ins as an Eclipse product. There-
fore, it runs as a stand-alone RCP application on any
platform without the need for an installed Eclipse but
nevertheless has many of the useful Eclipse functionali-
ties.

The whole application consists of 92 plug-ins. The Java
source code for our plug-in called org.um.feri.spin.rcp
is contained in 19 Java packages with a total of 84 files
defining Java classes. The total amount of our source
code is around 16,800 lines of Java code. The help con-
tents for SpinRCP is implemented in a separate plug-in
that contains more than 60 html files with descriptions
of individual help topics and many xml configuration
files. Currently, SpinRCP runs on 32- and 64-bit Win-
dows operating systems. Platforms with other operat-
ing systems will be supported later. Once the website
for SpinRCP is ready, it will be publicly announced.

Amongst the more important features of SpinRCP are
the following ones: a user-friendly Promela editor with
syntax colouring, code folding, keyword autocomple-
tion, and syntax error marking, running Spin verifi-
cation, random, guided, and interactive simulation,
graphical MSC viewing, abstracting MSCs by joining
some processes into an abstract process, conversion
of Spin simulation output trail to a standard text file,
which is readable by professional MSC viewers, display-
ing graphical automata representation of proctype
definitions and never claims in a model.

There are still a lot of ideas for improvements and new
features. Let us mention just some of them: better Spin
simulation output filtering, stepping back in time dur-
ing single step simulation, indication of the statement
that is currently executed during a simulation run in
the Promela source file, display of a process creation in
the MSC Viewer, generation of state tables for proctype
definitions and never claims, cleanup of temporary
files, verification management, swarm support [15] for
distributing a model checking task to more CPU cores
or to a cloud of workstations, etc.

APPENDIX A

1 /* Dolev, Klawe & Rodeh for leader election in
unidirectional ring

2 * `An O(n log n) unidirectional distributed algo-
rithm for extrema

3 * finding in a circle,’ J. of Algs, Vol 3. (1982), pp.
245-260

4
5 * Randomized initialization added -- Feb 17, 1997
6 */

7
8 /* sample properties:
9 * <>elected
10 * <>[]oneLeader
11 * [] (noLeader U oneLeader)
12 * ![] noLeader
13 *
14 * ltl format specifies positive properties
15 * that should be satisfied -- spin will
16 * look for counter-examples to these properties
17 * verify as:
18 * spin -a leader.pml
19 * cc -o pan pan.c
20 * ./pan -N p0
21 * ./pan -N p1
22 * ./pan -N p2
23 * ./pan -N p3
24 */
25
26 byte nr_leaders = 0;
27
28 ltl p0 { <> (nr_leaders > 0) }
29 ltl p1 { <>[] (nr_leaders == 1) }
30 ltl p2 { [] (nr_leaders == 0 U nr_leaders == 1) }
31 ltl p3 { ![] (nr_leaders == 0) }
32
33 #define N 5 /* number of processes in the ring */
34 #define L 10 /* 2xN */
35 byte I;
36
37 mtype = { one, two, winner };
38 chan q[N] = [L] of { mtype, byte};
39
40 proctype nnode (chan inp, out; byte mynumber)
41 { bit Active = 1, know_winner = 0;
42 byte nr, maximum = mynumber, neighbourR;
43
44 xr inp;
45 xs out;
46
47 printf(„MSC: %d\n“, mynumber);
48 out!one(mynumber);
49 end: do
50 :: inp?one(nr) ->
51 if
52 :: Active ->
53 if
54 :: nr != maximum ->
55 out!two(nr);
56 neighbourR = nr
57 :: else ->
58 know_winner = 1;
59 out!winner,nr;
60 fi
61 :: else ->
62 out!one(nr)

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

249

63 fi
64
65 :: inp?two(nr) ->
66 if
67 :: Active ->
68 if
69 :: neighbourR > nr && neighbourR > maxi-

mum ->
70 maximum = neighbourR;
71 out!one(neighbourR)
72 :: else ->
73 Active = 0
74 fi
75 :: else ->
76 out!two(nr)
77 fi
78 :: inp?winner,nr ->
79 if
80 :: nr != mynumber ->
81 printf(„MSC: LOST\n“);
82 :: else ->
83 printf(„MSC: LEADER\n“);
84 nr_leaders++;
85 assert(nr_leaders == 1)
86 fi;
87 if
88 :: know_winner
89 :: else -> out!winner,nr
90 fi;
91 break
92 od
93 }
94
95 init {
96 byte proc;
97 byte Ini[6];/* N<=6 randomize the process

 numbers */
98 atomic {
99
100 I = 1; /* pick a number to be assigned 1..N */
101 do
102 :: I <= N ->
103 if /* non-deterministic choice */
104 :: Ini[0] == 0 && N >= 1 -> Ini[0] = I
105 :: Ini[1] == 0 && N >= 2 -> Ini[1] = I
106 :: Ini[2] == 0 && N >= 3 -> Ini[2] = I
107 :: Ini[3] == 0 && N >= 4 -> Ini[3] = I
108 :: Ini[4] == 0 && N >= 5 -> Ini[4] = I
109 :: Ini[5] == 0 && N >= 6 -> Ini[5] = I /* works

 for up to N=6 */
110 fi;
111 I++
112 :: I > N -> /* assigned all numbers 1..N */
113 break
114 od;
115

116 proc = 1;
117 do
118 :: proc <= N ->
119 run nnode (q[proc-1], q[proc%N], Ini[proc-1]);
120 proc++
121 :: proc > N ->
122 break
123 od
124 }
125 }

Acknowledgments

This work was partially supported by the Slovenian
Research Agency within the research programme Ad-
vanced Methods of Interaction in Telecommunication.

References

1. G.J. Holzmann, “The Spin Model Checker: Primer
and Reference Manual”, Addison-Wesley, 2004.

2. G.J. Holzmann, “The Model Checker SPIN”, IEEE
Transaction on Software Engineering, vol. 23, no.
5, pp. 279-295, 1997.

3. C. Baier, J.-P. Katoen, “Principles of Model Check-
ing”, The MIT Press, 2008.

4. T.C. Ruys, “SPIN Beginners’ Tutorial”, SPIN 2002
Workshop, Grenoble, France, April 11, 2002, elec-
tronic file available at http://spinroot.com/spin/
Man/.

5. M. Ben-Ari, “Principles of the Spin Model Checker”,
Springer, 2008.

6. V.J. Koskinen, J. Plosila, Applications for the Spin
Model Checker – A Survey, Technical Report 782,
Turku Centre for Computer Science, Finland, Sep-
tember 2006.

7. M. Ben-Ari, jSpin – “Java GUI for SPIN: User’s Guide”,
Version 5.0, electronic file available at http://code.
google.com/p/jspin/downloads/list, 2010.

8. T. Kovše, “Integration of Spin Tool into Develop-
ment Environment Eclipse”, Diploma Work (in Slo-
vene), Faculty of Electrical Engineering, Slovenia,
2008.

9. T. Kovše, B. Vlaovič, A. Vreže, Z. Brezočnik, “Eclipse
plug-in for spin and st2msc tools - tool presen-
tation”, Lecture Notes in Computer Science, vol.
5578, pp. 143-147, 2009.

10. B. Vlaovič, A. Vreže, Z. Brezočnik, T. Kapus, “Auto-
mated generation of Promela model from SDL
specification”, Computer Standards and Interfac-
es, vol. 29, no. 4, pp. 449-461, 2007.

11. A. Vreže, B. Vlaovič, Z. Brezočnik, “Sdl2pml - tool
for automated generation of Promela model from

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

250

SDL specification”, Computer Standards and In-
terfaces, vol. 31, no. 4, pp. 779-786, 2009.

12. T. Kovše, B. Vlaovič, A. Vreže, Z. Brezočnik, “Spin
Trail to a Message Sequence Chart Conversion
Tool”, ConTEL 2009, I. Podnar Žarko, B. Vrdoljak
(Eds.), Proceedings of the 10th International Con-
ference on Telecommunications, Zagreb, Croatia,
June 8-10, 2009.

13. “Message Sequence Chart (MSC): Recommenda-
tion ITU-T Z.120”, International Telecommunica-
tion Union, 2011, electronic file available at http://
www.itu.int/rec/T-REC-Z.120-201102-I/en.

14. M.J. Hornos, J.C. Augusto, “Installation Process and
Main Functionalities of the Spin Model Checker”,
electronic file available at http://digibug.ugr.es/
handle/10481/19601, 2012.

15. G.J. Holzmann, R. Joshi, A. Groce, “Swarm Verifica-
tion Techniques”, IEEE transactions on Software
Engineering, vol. 37, no. 6, pp. 845-857, 2011.

16. B. de Vos, L.C.L Kats, C. Pronk, “EpiSpin: An Eclipse
Plug-In for Promela/Spin Using Spoofax”, In: A.
Groce, M. Musuvathi (Eds.): SPIN 2011, LNCS 6823,
Springer-Verlag, pp. 177-182, 2011.

17. T. Kovše, “Environment for formal verification of
safety-critical systems”, Master Thesis (in Slovene),
Faculty of Electrical Engineering and Computer
Science, University of Maribor, Slovenia, 2011.

18. Graphviz – Graph Visualization Software, elec-
tronic file available at http://graphviz.org.

19. D. Dolev, M. Klave, M. Rodeh, “An O(n log n) Uni-
directional Algorithm for Extrema Finding in a
Circle”, Journal of Algorithms, vol. 3, pp. 245-260,
1982.

Arrived: 01. 10. 2013
Accepted: 08. 11. 2013

Z. Brezočnik et al; Informacije Midem, Vol. 43, No. 4(2013), 235 – 250

