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Abstract: The chaotic systems offer benefits in diverse domains, including encryption and 
communication systems, particularly in the upkeep of intricate and safeguarded systems. This study 
introduces a new hyperchaotic system with four dimensions (4D), seven parameters, and four quadratic 
non-linear terms. An extensive analysis is conducted on the suggested hyperchaotic system to investigate 
its dynamic properties, such as chaotic attractors, stability of equilibrium points, spectrum of Lyapunov 
exponents (LE), bifurcation diagram, etc. The proposed system is validated both by experimental tests 
using an embedded hardware STM32 microcontroller and MATLAB simulations. The microcontroller-
based chaotic systems proposed in the literature and the given hyperchaotic system in this study are 
compared in a tabular form. The outcomes of these trials constantly correspond, offering theoretical 
validation for the utilization of this hyperchaotic system in real-world applications. An application 
example of an autonomous mobile robot (AMR) driven by the presented hyperchaotic system is 
provided in this work, as efficient and fast terrain exploration is a crucial problem in AMR path planning 
research. 

Keywords: chaos; hyperchaotic systems; embedded systems; microcontroller-based implementation; 
Autonomous mobile robots; chaotic path planning 

Mikrokrmilniška realizacija novega 4D 
hiperkaotskega sistema in njegova avtonomna 
uporaba za mobilne robote 
 

Izvleček: Kaotični sistemi so koristni na različnih področjih, vključno s šifrirnimi in komunikacijskimi 
sistemi, zlasti pri vzdrževanju zapletenih in zaščitenih sistemov. Ta študija uvaja nov hiperkaotični 
sistem s štirimi dimenzijami (4D), sedmimi parametri in štirimi kvadratnimi nelinearnimi členi. Na 
predlaganem hiperkaotičnem sistemu je opravljena obsežna analiza, da bi raziskali njegove dinamične 
lastnosti, kot so kaotični atraktorji, stabilnost ravnovesnih točk, spekter Ljapunovovih eksponentov 
(LE), bifurkacijski diagram itd. Predlagani sistem je potrjen z eksperimentalnimi preskusi z vgrajenim 
strojnim mikrokrmilnikom STM32 in simulacijami v programu MATLAB. V literaturi predlagani 
kaotični sistemi, ki temeljijo na mikrokrmilnikih, in dani hiperkaotični sistem v tej študiji so primerjani 
v obliki tabele. Rezultati teh poskusov se dobro ujemajo, kar ponuja teoretično potrditev uporabe tega 
hiperkaotičnega sistema v realnih aplikacijah. V članku je podan primer uporabe avtonomnega 
mobilnega robota (AMR), ki ga poganja predstavljeni hiperkaotični sistem, saj je učinkovito in hitro 
raziskovanje terena ključni problem pri raziskavah načrtovanja poti AMR. 
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1. Introduction 

Chaos theory unveils the fascinating duality of complex systems: governed by deterministic equations 

yet exhibiting seemingly random and unpredictable behavior. This paradoxical blend, aptly described as 

a “completely predictable state of confusion” [1], lies at the heart of numerous natural and engineered 

phenomena. Its study sheds light on diverse systems, ranging from weather patterns and ecological 

dynamics to population fluctuations and economic models [2 – 4]. Rossler conducted the initial research 

on the notion of hyperchaos [5]. The number of positive LE in the system frequently determines how 

complex the chaotic behavior of these systems is. Systems with one or more positive LE are considered 

chaotic, whereas those with two or more are considered hyperchaotic. 

4D hyperchaotic systems belong to a fascinating class of complex systems. These systems are highly 

sensitive to initial circumstances and display complex dynamics, resulting in butterfly effects where 

small variations in the starting point can cause significantly different and unforeseen consequences [6]. 

This very sensitivity, however, allows for potential control and manipulation, making them alluring 

objects of research for engineers and mathematicians alike [6, 7]. An increasing number of researchers 

have started looking for chaotic systems with more sophisticated dynamic behaviors to increase the 

security of chaotic information encryption and chaotic secure communication [8 – 10]. 

In recent times, there has been a proliferation of proposed hyperchaotic systems that have gained 

extensive utilization across various domains such as information processing, neuroscience, electronics, 

communications, and information technology [11] – [28]. Their more intricate dynamics have facilitated 

the development of secure communication, audio encryption, video encryption, and image encryption. 

A 4D autonomous chaotic system with cubic non-linear terms in each equation is presented in [11]. 

The given system can produce complex dynamics over a wide range of parameter values, such as chaos, 

period doubling bifurcation, Hopf bifurcation, periodic orbit, source, sink, and so forth. The study in 

[12] delves into a novel 4D chaotic system built on cubic non-linear terms. The proposed system exhibits 

two double-wing chaotic attractors that exist simultaneously. In Ref [13], an efficient method to design 

S-boxes based on the Qi Hyperchaos System is proposed. It is aimed at creating more robust S-boxes 

that can provide diffusion and confusion properties together. 

A new hyperchaotic attractor has been proposed by combining a uniform flux-controlled memristor 

and a cross-product term to the 3D autonomous chaotic system [14]. In the study conducted in [15], a 

4D chaotic system includes four non-linear terms and four variable parameters. In [16], a hyperchaotic 
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system with a butterfly effect is given. Numerical simulations and circuit implementation investigate the 

system's fundamental dynamic properties. 

Embedded hardware such as Field Programmable Gate Arrays (FPGAs) are widely used to simulate 

and control hyperchaotic systems [17] – [20]. A five-dimensional (5D) hyperchaotic system is presented 

and realized in FPGA [17]. It has an exponential-term and memristive model. The fundamental 

properties are examined using bifurcation diagrams, phase diagrams, and the LE. 4D and 5D 

hyperchaotic systems based on the classical Sprott-C three-dimensional (3D) system are presented in 

[18]. The proposed systems were realized by an FPGA and demonstrated by an experimental result. The 

main characteristics of the proposed system are demonstrated using LE spectra, phase diagrams, and 

bifurcation diagrams. A multistable 4D hyperchaotic system is implemented using an FPGA and a 

MultiSim circuit simulator in [19]. The fundamental characteristics of the suggested system are also 

analyzed. In [20], a 4D hyperchaotic system is proposed. There are two nonlinear terms among the nine 

terms in the presented system's dynamics. Additionally, the system exhibits multistability behavior 

within a certain range. Phase plots, Lyapunov spectra, Kaplan-Yorke dimension, and bifurcation 

diagrams are utilized to examine the system's intricate dynamic behavior. The implementation of FPGA 

is also realized. 

Real-time capabilities, low costs, power consumption, connectivity, and digital signal processing all 

contribute to the STM32's widespread use in numerous industries, including communications, industrial 

automation, control, and the Internet of Things (IoT) [21] – [26]. Some researchers have worked on the 

realization of chaotic systems using microcontrollers such as Arduino, STM32, PIC18F, etc.  

Based on a 3D Lü chaotic system, a 4D hyperchaotic system is built in [21]. The properties of the 

presented system, including chaotic attractors, the spectrum of LE, equilibrium point stability, and the 

bifurcation diagram, are investigated. Experimental validation is performed on STM32 embedded 

hardware. The simulations using Matlab and Multisim were also completed. In [22], a novel class of 

hyperjerk chaotic systems exhibiting megastability is introduced. Using the Lyapunov spectrum and 

bifurcation diagrams, different dynamical behaviors of one of the proposed systems are examined. For 

one of the suggested systems, PSpice simulation and PIC18F microcontroller realization are performed. 

An FO 3D system derived from a modified Chua's circuit system is introduced in [23]. Bifurcation 

analysis, multistability, and coexisting attractors are investigated. A microcontroller-based 3D FO 

system was implemented with an Arduino UNO board. In addition, PSpice simulations are done. 

Reference [24] introduces a novel 4D autonomous hyperchaotic system that is built upon the 3D chaotic 

system described in [25]. Numerical and analytical studies of the dynamic properties are investigated. 

The LEs are calculated. The presented system is simulated and implemented using a Proteus circuit 

simulator. In addition, two external digital-to-analog converters (DACs) and a 16-bit dsPIC 

microcontroller are utilized to operate the system. An autonomous chaotic system in 3D is introduced 
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in [25]. This system produces a chaotic attractor through the changing of two parameters. The dynamic 

properties were investigated analytically and numerically through the utilization of an electronic circuit 

consisting of operational amplifiers (OAs). Its microcontroller-based realization was implemented with 

the PIC32 and external DACs. In [26], a 3D chaotic system with five terms is introduced. The 

MATLAB/Simulink program uses numerical simulations to demonstrate how the system is 

synchronized. The secure communication implementation is done on the STM32 development board. 

The dynamical behaviors of the suggested system, including equilibria, bifurcation, phase plains, time 

series, and LE, are analyzed. A chaotic 3D attractor with seven terms involving a line and unstable 

equilibria is proposed in [27]. A comprehensive analysis is conducted on the intricate dynamical 

behavior of the system through the examination of its equilibria, LE, and bifurcation diagram. Analog 

circuit implementation and numerical and PSpice simulations are utilized to analyze the periodic states 

of the system. The realization of the system is performed utilizing an STM32 microcontroller. A 4D 

chaotic system is developed, and its dynamic behaviors are examined in Reference [28]. The system is 

implemented using analog active components and validated using PSpice simulation. The C8051 8-bit 

microcontroller-based random number generator, which uses the proposed chaotic system is designed. 

The comparison of the chaotic systems using the embedded microcontrollers in the literature with the 

present hyperchaotic system in this work is shown in Table 1. 

Table 1. The comparison of the chaotic systems implemented with the microcontroller. 

Ref. Dimension 
of system Type of system Number of  

non-linear terms 
Number of variable 

parameters Used MC Bit size 
of MC 

[21] 4D Hyperchaotic 3 quadratic terms 4 STM32 32-bit 
[22] 4D Chaotic 1 sinusoidal term 1 PIC18F 8-bit 
[23] 3D Chaotic 1 quadratic term 4 Arduino UNO 8-bit 
[24] 4D Hyperchaotic 2 quadratic terms 4 dsPIC33FJ 32-bit 
[25] 3D Chaotic 2 quadratic terms 4 PIC32 32-bit 

[26] 3D Chaotic 2 quadratic terms 
and 1 cubic term 1 STM32 32-bit 

[27] 3D Chaotic 5 quadratic terms 2 STM32 32-bit 
[28] 4D Chaotic 2 cubic terms 5 C8051 8-bit 
Prop. 4D Hyperchaotic 4 quadratic terms 7 STM32 32-bit 

MC: Microcontroller 

As seen in Table 1, some of the chaotic circuits using microcontrollers proposed in the literature are 

3D implementations [23], [25] – [27]. Some of these circuits do not exhibit hyperchaotic behavior [22], 

[23], 25 - 28]. They contain a limited number of non-linear terms [22] – [25], [28] and a smaller number 

of variable parameters [22], [26], [27]. Chaos applications have been implemented using low bit size 

microcontrollers [22], [23], [28]. It can be concluded that the hyperchaotic system presented in this work 

is advantageous compared to similar studies proposed in the literature. 

The main goal of path planning research is to construct an AMR system that can completely cover 

any environment containing dynamic or static obstacles at a given time. Due to the unpredictable nature 

of chaos, chaotic systems are one of the methods used in path planning. In the literature, studies on 
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chaotic path planning using various chaotic equations such as Lorenz, Chen, and Chua have been 

presented [29]-[36]. 

We introduce a new 4D hyperchaotic system in this paper. Dynamic properties such as chaotic 

attractors, equilibrium point stability, spectrum of LE, and bifurcation diagrams are examined in the 

suggested hyperchaotic system. The 4D hyperchaotic system is validated using embedded hardware 

(STM32 microcontrollers) and MATLAB simulations. A path planning application example is provided 

in the form of an AMR controlled by the proposed hyperchaotic system. 

2. Novel 4D Hyperchaotic System and Its Analysis  

A novel autonomous hyperchaotic system with 4 dimensions, 7 parameters, and 4 quadratic non-

linear terms are given below:  

�̇�𝑥 = 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑥𝑥         (1a) 

�̇�𝑎 = 𝑐𝑐𝑥𝑥𝑐𝑐          (1b) 

�̇�𝑐 = 𝑑𝑑 − 𝑒𝑒𝑥𝑥𝑎𝑎         (1c) 

�̇�𝑢 = 𝑓𝑓𝑎𝑎2 − 𝑔𝑔𝑢𝑢2         (1d) 

where x, y, z, and u are the state variables, and a, b, c, d, e, f, and g are the positive constant parameters. 

For the presented hyperchaotic system, the initial values of the state parameters and the constant 

parameters are selected as (𝑥𝑥,𝑎𝑎, 𝑐𝑐,𝑢𝑢) = (5.5, 2.8, 0.3, 0.1) and (𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓,𝑔𝑔) =

(4.8, 3, 0.8, 5.5, 1, 1.2, 2.58), respectively. The equilibrium points are calculated as follows: 

𝐸𝐸1,2(𝑥𝑥, 𝑎𝑎, 𝑐𝑐,𝑢𝑢) = �±�𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

, ±�𝑏𝑏𝑎𝑎
𝑎𝑎𝑏𝑏

, 0, ±�𝑏𝑏𝑎𝑎𝑏𝑏
𝑎𝑎𝑏𝑏𝑎𝑎

�     (2) 

To examine the stability, the Jacobian matrix is obtained. For this, the differential equations of the 

system must be differentiated for each variable. Accordingly, the matrix is found as follows: 

𝐽𝐽 = �

−𝑏𝑏 𝑎𝑎 0 0
𝑐𝑐𝑐𝑐 0 𝑐𝑐𝑥𝑥 0
−𝑒𝑒𝑎𝑎 −𝑒𝑒𝑥𝑥 0 0

0 2𝑓𝑓𝑎𝑎 0 −2𝑔𝑔𝑢𝑢

�        (3) 

After the equilibrium points, 𝐸𝐸1 and 𝐸𝐸2, found are substituted in the Jacobian matrix, and it is 

calculated as in Equation (4): 

𝐽𝐽1,2 =

⎝

⎜
⎜
⎜
⎜
⎛

−𝑏𝑏 𝑎𝑎 0 0

0 0 ±𝑐𝑐�𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

0

∓�𝑏𝑏𝑎𝑎𝑏𝑏
𝑎𝑎

∓�𝑎𝑎𝑎𝑎𝑏𝑏
𝑏𝑏

0 0

0 ±2𝑓𝑓�𝑏𝑏𝑎𝑎
𝑎𝑎𝑏𝑏

0 ∓2�𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎
𝑎𝑎𝑏𝑏 ⎠

⎟
⎟
⎟
⎟
⎞

     (4) 
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The characteristic equations of the system are found by using the matrix found as det(𝐽𝐽 − 𝜆𝜆𝜆𝜆), where 

the matrix I is a 4x4 diagonal unit matrix. Equation (5a) and (5b) are obtained for the equilibrium points 

𝐸𝐸1 and 𝐸𝐸2, respectively. 

det(𝐽𝐽1 − 𝜆𝜆𝜆𝜆) = 𝜆𝜆4 + �𝑏𝑏 + 2�𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎
𝑎𝑎𝑏𝑏

� 𝜆𝜆3 + �𝑎𝑎𝑎𝑎𝑎𝑎
𝑏𝑏

+ 2𝑏𝑏�𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎
𝑎𝑎𝑏𝑏

� 𝜆𝜆2 + 2𝑐𝑐𝑑𝑑 �𝑎𝑎 +�𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎
𝑏𝑏𝑏𝑏

� 𝜆𝜆 + 4𝑐𝑐𝑑𝑑�𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎
𝑏𝑏

           (5a) 

det(𝐽𝐽2 − 𝜆𝜆𝜆𝜆) = 𝜆𝜆4 + �𝑏𝑏 − 2�𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎
𝑎𝑎𝑏𝑏

� 𝜆𝜆3 + �𝑎𝑎𝑎𝑎𝑎𝑎
𝑏𝑏
− 2𝑏𝑏�𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎

𝑎𝑎𝑏𝑏
� 𝜆𝜆2 + 2𝑐𝑐𝑑𝑑 �𝑎𝑎 − �𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎

𝑏𝑏𝑏𝑏
� 𝜆𝜆 − 4𝑐𝑐𝑑𝑑�𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎

𝑏𝑏

           (5b) 

Here, in this study, 𝑎𝑎 > 0, 𝑏𝑏 > 0, 𝑐𝑐 > 0, 𝑑𝑑 > 0, 𝑒𝑒 > 0, 𝑓𝑓 > 0 and 𝑔𝑔 > 0 are taken. For both 

equilibrium points, roots of the characteristic equation are obtained in two different regions of the 

complex domain. For the first equilibrium point 𝐸𝐸1, 𝜆𝜆1 and 𝜆𝜆2 are obtained as negative real numbers. 

The other roots 𝜆𝜆3 and 𝜆𝜆4 are obtained as two complex numbers that conjugate with each other. These 

complex numbers have a positive real part. For the second equilibrium point 𝐸𝐸2, 𝜆𝜆1 and 𝜆𝜆2 are obtained 

as positive and negative real numbers, respectively. As in the 𝐸𝐸1, 𝜆𝜆3 and 𝜆𝜆4 eigenvalues are obtained as 

the same complex numbers. Hence, this hyperchaotic system is unstable. In Table 2, the calculated 

eigenvalues for both equilibrium points are given. 

Table 2. Eigenvalues for both equilibrium points. 

Equilibrium point 𝝀𝝀𝟏𝟏 𝝀𝝀𝟐𝟐 𝝀𝝀𝟑𝟑 𝝀𝝀𝟒𝟒 

𝐸𝐸1 -6.5246 -3.9370 0.4685 + j3.2418 0.4685 - j3.2418 

𝐸𝐸2 6.5246 -3.9370 0.4685 + j3.2418 0.4685 - j3.2418 

 

Figure 1 illustrates the LE of the suggested 4D hyperchaotic system in time. When the LE of the 

proposed system are calculated with these values, the values obtained are  

𝐿𝐿1 = 0.5168, 𝐿𝐿2 = 0.0155, 𝐿𝐿3 = -3.5305, and 𝐿𝐿4 = -6.9981 [37]. Here, the positive maximum LE confirms 

the chaotic nature of the signals produced. If the Kaplan-Yorke Dimension of the proposed 4D 

hyperchaotic system is founded using these exponents according to Equation (6), 2.5716 is obtained 

[38], when j is the maximum index to provide ∑ 𝐾𝐾𝑖𝑖
𝑗𝑗
𝑖𝑖=1 > 0, by arranging the exponents descending order 

as 𝐿𝐿1 > 𝐿𝐿2 > ⋯ > 𝐿𝐿𝑛𝑛.  

𝐷𝐷𝐾𝐾𝐾𝐾 = 𝑗𝑗 +
∑ 𝐿𝐿𝑖𝑖
𝑗𝑗
𝑖𝑖=1
�𝐿𝐿𝑗𝑗+1�

         (6) 
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Figure 1. Lyapunov exponents of the system in time. 

Furthermore, the Jacobian matrix for the suggested system is used to obtain the divergence value 

ΔV value, which determines the dissipativity of the system. If this ΔV value is negative, the system 

exhibits chaotic attractors and chaotic behavior under specified beginning conditions. The divergence 

value of the system is −9,5245689. Since ∆𝑉𝑉 < 0, the system behaves chaotically. 
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(b) 

 
(c) 

 
(d) 

Figure 2. Lyapunov exponents and bifurcation diagrams of the system. 

Table 3. The parameter region showing chaotic behavior. 
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Parameters Parameter Range of Chaotic 
Behavior 

Parameter Range of Hyperchaotic 
Behavior 

a 0 < 𝑎𝑎 < 14.2 
15.6 < 𝑎𝑎 < 20 

4.2 < 𝑎𝑎 < 5 
9.1 < 𝑎𝑎 < 14.5 
15.6 < 𝑎𝑎 < 20 

b 0 < 𝑏𝑏 < 20 1.7 < 𝑏𝑏 < 3.2 

c 
0.3 < 𝑐𝑐 < 5.2 

5.8 < 𝑐𝑐 < 12.8 
13.9 < 𝑐𝑐 < 20 

0.4 < 𝑐𝑐 < 1.4 
2.4 < 𝑐𝑐 < 5.2 

d 1.0 < 𝑑𝑑 < 1.6 
1.9 < 𝑑𝑑 < 20 

7.5 < 𝑑𝑑 < 8.3 
9.6 < 𝑑𝑑 < 16.9 

e 0 < 𝑒𝑒 < 20 1.5 < 𝑒𝑒 < 3 
5.3 < 𝑒𝑒 < 5.9 

f 0 < 𝑓𝑓 < 20 0.8 < 𝑓𝑓 < 1.4 
13.8 < 𝑓𝑓 < 15.9 

g 0 < 𝑔𝑔 < 20 2 < 𝑔𝑔 < 2.7 
6.7 < 𝑔𝑔 < 7.4 

 
Lyapunov exponents and bifurcation diagrams of the suggested system according to the a, b, c, and 

d parameter values are also given in Figure 2. Table 3 illustrates the regions where the proposed chaotic 

system shows chaotic and/or hyperchaotic behavior according to its parameters. These ranges are 

obtained from the LE diagrams in Figure 2, and Table 3 shows the ranges in which certain parameters 

exhibit chaotic and hyperchaotic behavior. These ranges are crucial for understanding the dynamic 

properties of the system. When the initial values and constant parameters given above were applied to 

the hyperchaotic system given by Equation (1), the Lyapunov spectra seen in Figure 1, the LEs and the 

bifurcation diagrams seen in Figure 2 and Table 3 were examined, and it was determined that the system 

showed chaotic behavior for a very wide range of values. Parameter a exhibits a wide range of chaotic 

behavior with distinct intervals interspersed with non-chaotic regions. For the parameter a, chaotic 

behavior is observed in the ranges 0 to 14.2 and 15.6 to 20. The parameter a shows hyperchaotic behavior 

in the ranges 4.2 to 5, 9.1 to 14.5 and 15.6 to 20. Parameter b exhibits continuous chaotic behavior 

between 0 and 20, while hyperchaotic behavior occurs in the range 1.7 to 3.2.  

The parameter c exhibits chaotic behavior in two distinct intervals and hyperchaotic behavior in one 

interval. Parameters d, e, and g show similar patterns of chaotic and hyperchaotic behavior over multiple 

intervals. Interestingly, parameter f exhibits a continuous range of chaotic behavior, with no hyperchaotic 

regions within the given parameter range. Overall, the dynamics of the system appear to be highly 

sensitive to parameter changes, particularly for parameters a, c, d, and g. This sensitivity is evident from 

the distinct intervals of chaotic and hyperchaotic behavior observed for these parameters. Further 

analysis using mathematical tools such as Lyapunov exponents could provide more detailed insights into 

the dynamics of the system and the transitions between chaotic and hyperchaotic regimes. 

Based on the above-mentioned findings, it can be said that the system parameter values that put the 

system into chaotic behavior are in a wide range. In this way, if the system parameters are selected at 

appropriate values during an application, the proposed 4D hyperchaotic system will show chaotic 



 Betül YÜRDEM et al.; Informacije MIDEM, Vol. 55, No. 3(2025), XX – XX  

 
 

 

behavior without being affected much by the tolerances or deviations of the circuit components and 

power supplies to be used in the application. 

3. Simulation and Experimental Results  

The system in (1) were defined in the MATLAB program, and the changes with time of the state 

variables were obtained for (𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓,𝑔𝑔) = (4.8, 3, 0.8, 5.5, 1, 1.2, 2.58) values. The results 

obtained are given in Figure 3. 

 

Figure 3. MATLAB results for state variables. 

The changes of the variables relative to each other were also plotted with the MATLAB program 

for the same (𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓,𝑔𝑔) values. Figure 4 shows the plots of the changes of the variables over time 

relative to each other in the following order: x-y variables in (a), x-u variables in (b), x-z variables in 

(c), y-z variables in (d), y-u variables in (e), u-z variables in (f), x-y-u variables in (g), x-y-z variables 

in (h), z-u-x variables in (i), and y-z-u variables in (j). 
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(i) 

 
(j) 

Figure 4. Change of state variables relative to each other. 

After obtaining the ideal responses of the system through simulation processes, the system was also 

physically realized. For this, the electrical signals of the state variables were produced using the STM32 

microcontroller. First, two separate DAC outputs were set from the STM32 settings. Then, the system 

state variables are defined in the coding section. When the ideal signals obtained with MATLAB were 

examined, it was observed that negative values were also obtained. At the same time, values higher than 

the voltage value that the microcontroller can provide were observed. Since the values for these two 

cases cannot be obtained with the microcontroller, the obtained values are normalized to be between 0 

V and 3.3 V. The algorithm diagram of the written code is given in Figure 5.  
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Figure 5.The flow chart of the microcontroller program. 

The time variation of the signals produced by the microcontroller was measured and displayed with 

an oscilloscope. The oscilloscope results of the variables x in Figure 6 (a), y in Figure 6 (b), z in Figure 

6 (c), and u in Figure 6 (d) have been added. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Change of state variable signals obtained from the microcontroller over time, (a) x state, (b) y 

state, (c) z state, and (d) u state. 

As in the simulation steps, the changes between the signals obtained with the microcontroller were 

also observed using the XY mode on the oscilloscope. The obtained results are given in Figure 7. The 

measured state variable signals relative to each other are in the following order: x-y variables in (a), x-

u variables in (b), x-z variables in (c), y-z variables in (d), y-u variables in (e), and u-z variables in (f). 
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(f) 

Figure 7. Change of state variable signals obtained from the microcontroller to each other, (a) x-y 

states, (b) x-u states, (c) x-z states, (d) y-z states, (e) y-u states, and (f) u-z states. 

4. Chaos-Driven Autonomous Mobile Robot Application 

Chaotic path planners use chaotic dynamical systems to generate paths within an environment. Path 

planners are critical for surveillance efforts involving hostile agents, as they require unusual routes and 

comprehensive coverage of the area. When exploring unknown terrain online, chaotic path planning 

algorithms can be used without relying on an environmental map. These methods give the designer 

greater control over the paths generated than random walk algorithms [31]. Recently, many researchers 

have applied chaotic complex systems to mobile robots [29]-[36]. They have been used in many 
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applications, such as mobile robot patrols, cleaning robots, and many others. However, the simulated 

trajectories of robots in most of the existing works in the literature show that their coverage is generally 

low. 

The two active wheels are controlled by linear velocity 𝑣𝑣(𝑡𝑡)  and angular velocity 𝜔𝜔(𝑡𝑡), as shown in 

Figure 8. The nonlinear dynamic response of the mobile robot's motion and steering is determined by 

two independent actuators of analog DC motors that apply appropriate torques to the right and left 

wheels of the mobile robot [33].  

Eq. (7) defines the position vector of the mobile robot's local reference frame, while the global reference 

frame is [Xaxis, Yaxis]. 

𝑄𝑄 = [𝑋𝑋𝑟𝑟,𝑌𝑌𝑟𝑟,𝜃𝜃𝑟𝑟] 𝑇𝑇          (7) 

where 𝑋𝑋𝑟𝑟(𝑡𝑡) and 𝑋𝑋𝑟𝑟(𝑡𝑡) are the position and 𝜃𝜃𝑟𝑟(𝑡𝑡) is the orientation of the three-wheeled mobile robot 

at the midpoint which indicates the location where the left and right wheels meet in the center.   

Two primary requirements must be met to confirm the mobile robot's motion and orientation capabilities: 

each wheel must roll in a pure manner and must not slip for the mobile robot's lateral velocity to equal 

zero, as stated in Eq. (8). 

−�̇�𝑋𝑟𝑟 sin𝜃𝜃(𝑡𝑡) + �̇�𝑌𝑟𝑟 cos𝜃𝜃(𝑡𝑡) = 0        (8) 

As a results, the navigation equation of a three-wheeled mobile robot can be defined as follows [32], 

[33]: 

�
𝑋𝑋�̇�𝑟
𝑌𝑌𝑟𝑟
�̇�𝜃𝑟𝑟

̇ � = �
cos𝜃𝜃(𝑡𝑡)      0
sin𝜃𝜃(𝑡𝑡)       0
   0                1

� �𝑣𝑣(𝑡𝑡)
𝜔𝜔(𝑡𝑡)�        (9) 

where 𝑣𝑣(𝑡𝑡) = [𝑣𝑣𝑟𝑟(𝑡𝑡) + 𝑣𝑣𝑙𝑙(𝑡𝑡)]/2 and 𝜔𝜔(𝑡𝑡) = [𝑣𝑣𝑟𝑟(𝑡𝑡) − 𝑣𝑣𝑙𝑙(𝑡𝑡)]/𝐿𝐿. The variables 𝑣𝑣𝑟𝑟(𝑡𝑡) and 𝑣𝑣𝑙𝑙(𝑡𝑡) 

represent the velocity of the right and left wheels, respectively. The direct distance between both wheels 

is denoted by L. 
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Figure 8. Schematic of the three-wheeled AMR navigation 

In order to improve the understanding of the robot's chaotic path planning generator, a discontinuous 

control rule is used, which offers advantages in terms of terrain scanning time. Under this control rule, 

the robot performs two independent actions. First, to steer the robot directly to the next target coordinate, 

it rotates around its center with a constant angular velocity 𝜔𝜔(𝑡𝑡), as defined by Equation (10). Equation 

(11), which defines the target, is the path taken by the second action, which is a straight trajectory with 

constant velocity 𝑣𝑣(𝑡𝑡). 

�
𝑋𝑋�̇�𝑟
𝑌𝑌𝑟𝑟
�̇�𝜃𝑟𝑟

̇ � = �

     
0
0

𝜔𝜔(𝑡𝑡)
�        (10) 

�
𝑋𝑋�̇�𝑟
𝑌𝑌𝑟𝑟
�̇�𝜃𝑟𝑟

̇ � = �
cos𝜃𝜃(𝑡𝑡)
sin𝜃𝜃(𝑡𝑡)

0
�        (11) 

The idea behind employing a chaotic system for navigation is to substitute two state values from the 

chaotic equation for the linear velocities of the left and right wheels in the navigation equation. 𝑥𝑥(𝑡𝑡) 

replaces 𝑣𝑣𝑟𝑟(𝑡𝑡) and 𝑎𝑎(𝑡𝑡) replaces 𝑣𝑣𝑙𝑙(𝑡𝑡). A seven-dimensional system can be created by combining the 

given hyperchaotic system and the three-wheeled AMR navigation equation in (9). 
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⎧
�̇�𝑥
�̇�𝑎
�̇�𝑐
�̇�𝑢
𝑋𝑋�̇�𝑟
𝑌𝑌�̇�𝑟
�̇�𝜃𝑟𝑟

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑥𝑥              
𝑐𝑐𝑥𝑥𝑐𝑐                       
𝑑𝑑 − 𝑒𝑒𝑥𝑥𝑎𝑎              
𝑓𝑓𝑎𝑎2 − 𝑔𝑔𝑢𝑢2         
𝑥𝑥(𝑡𝑡)+𝑦𝑦(𝑡𝑡)

2
cos𝜃𝜃(𝑡𝑡)

𝑥𝑥(𝑡𝑡)+𝑦𝑦(𝑡𝑡)
2

sin𝜃𝜃(𝑡𝑡)
𝑥𝑥(𝑡𝑡)−𝑦𝑦(𝑡𝑡)

𝐿𝐿
                

       (12) 

Equation (12) shows how the AMR navigates around the suggested hyperchaotic system. 

A 20×20 m area is used to test the above equation for robot motion through numerical simulations. The 

starting position of the mobile robot is (𝑥𝑥 = 10 𝑚𝑚,𝑎𝑎 = 10 𝑚𝑚) and the system is simulated for 1000, 

2000, 3000, and 4000 iterations. Assuming that the limits are located at the horizontal and vertical lines 

x = 0, x = 21 m, y = 0, y = 21 m. Wheel distance is L=0.1 m, initial values of state parameters and 

constant parameters are chosen as (𝑥𝑥,𝑎𝑎, 𝑐𝑐, 𝑢𝑢) = (5.5, 2.8, 0.3, 0.1) and (𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓,𝑔𝑔) =

(4.8, 3, 0.8, 5.5, 1, 1.2, 2.58), respectively.  As a results, the simulation result generated by MATLAB 

program the motion trajectory of the AMR for 1000, 2000, 3000, and 4000 iterations as it is in Figure 9 

(a), (b), (c), and (d), respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 9. Simulation result of navigation path of chaos-driven AMR: a) 1000, b) 2000, c) 3000, d) 

4000 iterations. 

The above simulations also work for different scenarios in areas of different sizes and shapes. One such 

scenario is shown in the three simulations in Figure 10. For this, the simulation was repeated by placing 

a 10×10 m obstacle in the 20×20 m area above. In the simulations, the starting position of the AMR is 

(𝑥𝑥 = 10 𝑚𝑚,𝑎𝑎 = 10 𝑚𝑚), the other parameters are chosen as in the previous simulations. The gray areas 

indicate the obstacles. It is possible to place more than one obstacle of different sizes in different parts 

of the area. 

Simulations with 2000 and 4000 iterations are shown in Figure 10 (a) and (b). As can be seen in Figure 

10, the AMR scanned almost the entire obstacle area as the number of iterations increased. In some 

cases, the mobile robot entered the obstacle area. To avoid this situation, a robot safety distance can be 

set. This will prevent the AMR from entering the obstacle area. Another simulation is performed and 

given as Figure 10 (c), which shows the simulation results of a 20×20 m area with a robot safety distance 

of 1 m. As can be seen in Figure 10 (c), the AMR is prevented from entering the obstacle area thanks to 

the safety distance created. 

 
(a) 

 
(b) 

 
(c) 
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Figure 10. Simulation result of the AMR with obstacle: a) 2000, b) 4000, and c) 4000 iterations with 1 

m safety distance. 

 

Figure 11. Simulation result of the AMR with obstacle: a) Position vs time, b) Velocity vs time graph 

for 1 m safety distance. 

Using acceleration, deceleration, and velocity values of the AMR, a trapezoidal velocity profile 

trajectory was generated by interpolating waypoints along each dimension (X, Y) using the above 

parameters in the 20x20 meter with obstacle area [39]. Figure 11 shows the plots the position and 

velocity with respect to time. As can be seen from Figure 11, the velocity of the AMR varies 

unpredictably between -2 and +2 m/s depending on the parameters of the proposed hyperchaotic system. 

Figure 12 depicts a graph illustrating the average coverage percentage of a specific area by the AMR as 

a function of the number of iterations. Each iteration is done for one second. Figure 12 presents three 

distinct curves corresponding to 0.05, 0.1, and 0.2 values of the parameter L, representing the wheel 

distance in meters. For this example, the coverage percentage was achieved at 50% in almost 7900th, 

4900th, and 4300th seconds respectively for the given L values. Additionally, when the times for 90% 

coverage were examined, it was observed that this value was reached at almost 20600th, 15600th, and 

14300th seconds. At the end of this simulation, that is, at the 40000th second, 98.84%, 99.84%, and 

99.74% of the 20×20 m area was covered by AMR for each wheel distance, respectively. The number 

of iterations of the robot increases the coverage percentage also increases. This shows that the AMR 

scans the area more thoroughly over time, leaving fewer gaps. As the L wheel distance increases, more 

area is scanned in each second and the coverage percentage increases faster.  
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Figure 12. Coverage performance of the AMR  

5. Statistical Evaluation of Randomness 

In order for the proposed hyperchaotic system to be used in various applications, such as cryptography, 

it must be tested using statistical tests that require long bitstreams of random binary bits. The National 

Institute of Standards and Technology (NIST) widely uses the NIST SP800-22 test set [40].  

We first quantized the values from the chaotic system to prepare the data for testing. We determined the 

amount of shift to apply to the variables based on their current values in order to increase randomness. 

For instance, we apply a shift operation in the form of 232/x[n] to shift the variable x. We provide the 

procedures used to prepare the test data below: 

Step 1: x, y, z and u variables were converted to 32 bits. 
Step 2: The variable y was shifted and XORed with the variable x. 
Step 3: The z variable was shifted and XORed with the y variable. 
Step 4: The values obtained in steps 2 and 3 were XORed. 
Step 5: The variable u was shifted and XORed with the variable z. 
Step 6: The variable u is shifted and XORed with the variable x. 
Step 7: The results of steps 5 and 6 were XORed. 
Step 8: The most significant 16 bits of the result obtained in step 4 and the least significant 16 

bits of the result obtained in step 7 were combined. 
Step 9: The least significant 16 bits of the result obtained in step 4 and the least significant 16 

bits of the result obtained in step 7 were combined. 
Step 10: The results obtained in steps 8 and 9 were XORed. 

 
After data preparation, we obtained approximately 14 Mbits. We tested the data for randomness using 

the NIST 800-22 test tool. There are a total of 15 tests in the NIST 800-22 test suite, and the parameters 
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of each test are described in detail in [40]. For each test to be considered successful, the p-value must 

be greater than 0.001. The parameters used in the test are shown in Table 4, and the results are shown in 

Table 5. As seen in Table 5, all standard tests are passed and the test results indicate that the proposed 

hyperchaotic system exhibits strong randomness properties suitable for secure applications, such as 

autonomous mobile robot path planning. 

Table 4. NIST 800-22 test parameters 

Parameter Name Value 
Block Frequency Test - block length (M) 12 
Non-Overlapping Template Test - block length (m) 9 
Overlapping Template Test - block length (m)  9 
Approximate Entropy Test - block length (m)  10 
Serial Test - block length (m)  16 
Linear Complexity Test - block length (M) 50 

 

Table 5. Microcontroller-based 4D hyperchaotic system NIST 800-22 test results 

Test p-value Proportion   Result 
Frequency 0.911413 10/10 Passed 
Block Frequency 0.534146 8/10       Passed 
Cumulative Sums 1 0.350485 10/10       Passed 
Cumulative Sums 2 0.739918 10/10       Passed 
Runs 0.534146 10/10       Passed 
Longest Run 0.534146 10/10       Passed 
Rank 0.035174 10/10       Passed 
FFT 0.534146 10/10       Passed 
Non-overlapping Template* 0.474107 10/10       Passed 
Overlapping Template 0.911413      10/10       Passed 
Universal 0.739918       9/10       Passed 
Approximate Entropy 0.739918      10/10       Passed 
Serial 1 0.739918      10/10       Passed 
Serial 2 0.534146       9/10       Passed 
Linear Complexity 0.122325      10/10       Passed 

* Average 

6. Conclusion 

In this study, a novel hyperchaotic system was defined and realized with the embedded hardware STM32 

microcontroller. A table comparing the microcontroller-based chaotic systems from existing research 

with the hyperchaotic system introduced in this study is provided. The proposed structure has several 

benefits when compared to similar structures in existing literature. 

The equilibrium points of the system were calculated using the state variable equations, and the 

stability of the system was investigated with a bifurcation diagram and LE. Then, to examine the ideal 

changes in time of these variables, their graphs were plotted according to time and relative to each other 

in the MATLAB environment, and the simulations were carried out. After that, the state variables were 

generated as electrical signals using the microcontroller. These signals were produced by converting 

digital signals to analog signals with a microcontroller and were observed on the oscilloscope screen. 
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As a result, the experimental results obtained by the microcontroller-based implementation of the 

presented hyperchaotic system coincide with the simulation results from MATLAB. 

Efficiently and rapidly exploring a given terrain is a critical challenge in path planning research for 

autonomous mobile robots. Therefore, an application example of a chaotic path planning of the AMR is 

provided in order to test the presented hyperchaotic system. For these simulations, a 20×20 m area with 

and without obstacles is used. The effect of the change in wheel distance on area coverage is also 

examined. 
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