
 

Multi-user task offloading for mobile edge computing 
based on reinforcement learning  

JEMBU MOHANRAM Nandhini1, KALIAPERUMAL Saravanan2, KESAVAN Anuratha3* and SANKAR Uma4 

1*Associate Professor, Department of CSE, Sri Sai Ram Institute of Technology,Chennai Tamil Nadu, India. 
2Professor, Department of CSE, Saveetha School of Engineering, SIMATS, Chennai Tamilnadu, India. 

3*Associate Professor, Department of IT, Sri Sai Ram Institute of Technology, Chennai Tamil Nadu, India. 
4Associate Professor, Department of IT, Panimalar Engineering college, Chennai Tamil Nadu, India. 

*Corresponding Author mail ID : anujournal381@gmail.com 
 

Abstract: 

Mobile Edge computing (MEC) enables network functions and control programmable and operates key constituents 
of social networks in terms of increasing user’s support on devices to carry out compute. It requires traffic 
offloading and task scheduling to improve the storage and fast computing.  In this paper, a novel method, including 
data driven traffic modeling enabled by a Reinforcement learning algorithm (RLTOA), is proposed for offloading 
traffic and improving the computing speed and minimizing the application latency of the social network. The result 
of the proposed data driven modeling is compared with existing methods and validate how the data driven traffic 
modeling for providing the computation offloading service in terms of energy budget and the mobile drop and 
execution of edge server. The presented computation offloading, and energy management solutions can provide 
valuable perceptions for practical applications of MEC. Extensive numerical findings are presented to endorse the 
efficacy of RLTOA and display the effect of the social network requirement. 
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Razbremenitev večuporabniških nalog za mobilno 
robno računalništvo na podlagi okrepljenega učenja  
Izvleček: 

Mobilno robno računalništvo (MEC) omogoča programiranje omrežnih funkcij in nadzora ter upravlja ključne 
sestavne dele družbenih omrežij z vidika povečanja podpore uporabnikom na napravah za izvajanje računalniških 
operacij. Za izboljšanje shranjevanja in hitrega računalniškega delovanja je potrebno razbremenjevanje prometa in 
načrtovanje nalog.  V članku je predlagana nova metoda, vključno z modeliranjem prometa na podlagi podatkov, ki 
ga omogoča algoritem okrepljenega učenja (RLTOA), za razbremenitev prometa in izboljšanje hitrosti 
računalniškega obdelovanja ter zmanjšanje zakasnitve aplikacij družbenega omrežja. Rezultat predlaganega 
modeliranja na podlagi podatkov so primerjani z obstoječimi metodami in potrjujejo modeliranje prometa na podlagi 
podatkov za zagotavljanje storitve razbremenitve računalniških operacij v smislu energijskega proračuna in 
mobilnega padca ter izvajanja robnega strežnika. Predstavljene rešitve za razbremenitev računalniških operacij in 
upravljanje z energijo lahko zagotovijo dragocene ugotovitve za praktične aplikacije MEC. Predstavljeni so obsežni 
numerični rezultati, ki potrjujejo učinkovitost RLTOA in prikazujejo učinek zahtev družbenega omrežja. 

 

Ključne besede: MEC; okrepljeno učenje; razbremenitev prometa; načtovanje nalog  

 



 

 

1 Introduction 

Beyond 5G network (B5G) is assessed through the 
intensive and sensitive applications through traffic and 
computation offloading by increasing computational 
capacity to the edge of B5G networks.  Reinforcement 
Learning (RL) can solve this problem using sparse and 
inaccurate network data. In this paper, we employ RL to 
develop an ideal task scheduling and computation 
offloading technique that reduces system energy usage. 
A framework for reinforcement learning based edge 
computing is introduced in B5G networks for mobile 
edge computing (MEC) server for social related 
network applications and for battery-powered and 
resource-controlled devices [1]. In this paradigm, these 
social related delay-sensitive applications are shifted 
from resident users to nearby network edge server; edge 
computing is a promising technology to address the 
problem [2]. Since the processing capacity of these 
pervasive mobile edge servers are frequently 
constrained, offloading all work from devices to edge 
servers may, on the other hand, result in larger 
latency.[3-5] Additionally, compute task offloading, 
particularly in 5G networks that are diverse and ultra-
dense, can result in increased interference and 
unanticipated transmission delays. On the other hand, 
local computing can considerably minimize the latency 
of job execution [6]. The contradiction is found 
between computation delay with energy consumption is 
essentially what determines whether to execute tasks 
locally or offload them when creating an offloading 
strategy [7-9]. There are various algorithms focusing on 
minimizing the transmitted powers, and to maximize 
throughput [10].  In the framework of the B5G network, 
computation complexity and task scheduling are 
handled by means of adding Small base stations (BS) as 
indoor base stations that have expanded significant 
attention [11]. Heterogeneous network (Hetnet) 
comprises of Macro BS (MBS) overlapped with small 
BS (SBS) and an autonomous power distribution is 
possible with the aid of RL. This heterogeneity 
structure offers features such as network data rate, 
connectivity, and energy efficiency [12-16]. In this B5G 
Hetnet, Co-operative and distributive learning outcomes 
optimization have been playing significant role in 
addressing energy related problem [17-22]. Many 
researchers suggested binary offloading and partial 

offloading to adopt the system flexibly [23], the game-
theoretic modeling and the quadratic programs are also 
implemented with non-convex optimization. Then, the 
design concepts for B5G networks with MEC are 
different from those for MEC systems with SBS to 
minimize system energy consumption. A deep Q-
Network (DQN) is based on the reinforcement learning 
working with deep neural networks, enabling more 
effective decision-making in complex MEC 
environments. Battery-powered device systems are 
preferable in B5G networks [24]. Collaborative design 
is important in task offloading since it is difficult to 
make decision on when to offload and when to execute, 
in this case, the key parameters are the CPU-cycle 
frequencies and time interval for execution [25]. The 
design goal is to minimize battery energy usage to 
optimize computation performance in contrast to MEC 
systems with battery-powered components. Along with 
these novel design considerations, managing the service 
constraints and the battery energy dynamics presents 
additional difficulties, this paper contributes to reduce 
the latency and computational cycle of MEC server 
using RL algorithm. The key ideas of this research are 
as follows. 

• By jointly optimizing the offloading decision, 
compute the total computation capability, 
energy consumption, and battery energy. The 
co-operative problem is formulated. 

• To optimize the traffic offloading process, the 
Enhanced RL algorithm is introduced so that 
the decision making of task scheduling and 
computational speed is increased. In each time 
slot, the algorithm tries to optimize the CPU-
cycle frequency and battery energy through 
trial and error. 

• To analyze and compare the simulated results 
with prevailing algorithms reported with 
greedy allocation so as to impart the 
effectiveness of the proposed RL based MEC 
system 

The articulation of proposed B5G MEC system is 
illustrated in Section 2 and figure 1. The experimental 
findings and a comparison with the current approaches 



 

are discussed open in Section 3. The conclusion part is 
given in Section 4. 

 2  System Methodology 

MEC is an effective system to equip the management of 
mobile devices and is illustrated in figure 1. MEC 
server acts as a cloud head and runs a virtual machine 
offloading the computational task for edge mobile 
users. We consider the communication model consists 
of one macrocell and smallcells which are surrounded 
by the mobile devices and MEC server. The Euclidean 
distance between the macrocell and MEC server is 
defined as 

𝑑𝑑𝑗𝑗,𝑡𝑡 = ��𝑤𝑤𝑡𝑡
𝑀𝑀𝑀𝑀 − 𝑤𝑤𝑗𝑗,𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀�2
  , ∀𝑡𝑡 ∈ Ӻ, 𝑗𝑗 ∈ 𝛭𝛭.            (1) 

The channel gain between communication model is 
considered as free space path loss and is denoted as 

ℎ𝑗𝑗,𝑡𝑡 = 𝜂𝜂𝑑𝑑𝑗𝑗,𝑡𝑡
−2 = 𝜂𝜂

�𝑤𝑤𝑡𝑡𝑀𝑀𝑀𝑀−𝑤𝑤𝑗𝑗,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀�
2  ∀𝑡𝑡 ∈ Ӻ, 𝑗𝑗 ∈ 𝛭𝛭.           (2) 

Frequency division multiple access serves the time 
intervals between the MEC server and all users. The 
complete bandwidth is divided into G smaller bands and 
each mobile device gets assigned B5G bands.[4] The 
signal-to-noise ratio (SNR) is calculated as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗,𝑡𝑡 =
ℎ𝑗𝑗,𝑡𝑡 𝑃𝑃𝑗𝑗,𝑡𝑡
𝜇𝜇𝜇𝜇/𝐺𝐺

               (3) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗,𝑡𝑡 =
𝜂𝜂𝑝𝑝𝑗𝑗,𝑡𝑡
𝜇𝜇𝜇𝜇

𝐺𝐺�𝑤𝑤𝑡𝑡
𝑀𝑀𝑀𝑀−𝑤𝑤𝑗𝑗,𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀�
2
  ∀𝑡𝑡 ∈ Ӻ, 𝑗𝑗 ∈ 𝛭𝛭.           (4) 

Where 𝑝𝑝𝑗𝑗,𝑡𝑡is the transmit power of jth mobile edge 

device and μ specifies additive white Gaussian noise. 
The data rate of the MEC system is  

𝑅𝑅𝑗𝑗,𝑡𝑡 = 𝐵𝐵

𝐺𝐺
𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +

𝜌𝜌0𝑝𝑝𝑗𝑗,𝑡𝑡
𝜇𝜇𝜇𝜇

𝐺𝐺�𝑤𝑤𝑡𝑡
𝑀𝑀𝑀𝑀−𝑤𝑤𝑗𝑗,𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀�
2
�∀𝑡𝑡 ∈ Ӻ, 𝑗𝑗 ∈ 𝛭𝛭.  (5) 

 Similarly, the optimality of MEC is a process to attain 
the best outcomes when the jth mobile device offloads 
the duty to the edge MEC server. It can effectively 
located in a fixed coordinates and denoted as 𝑤𝑤𝑡𝑡

𝐸𝐸𝐸𝐸 =
(𝑥𝑥𝐸𝐸𝐸𝐸, 𝑦𝑦𝐸𝐸𝐸𝐸 , 0) and the corresponding distance between jth 

mobile device and edge MEC server in time slot is 
represented as 

𝑑𝑑𝐸𝐸𝐸𝐸,𝑡𝑡 = �𝑤𝑤𝑗𝑗,𝑡𝑡
𝑀𝑀 − 𝑤𝑤𝑡𝑡

𝐸𝐸𝐸𝐸�              (6) 

The channel gain is defined as 

ℎ𝐸𝐸𝐸𝐸,𝑡𝑡 = 𝑔𝑔

�𝑑𝑑𝐸𝐸𝐸𝐸,𝑡𝑡�
2                 (7) 

G is denoted as the power gain and the Euclidean 
distance assumed as 5 meters. The data rate in the 
specified duration t is assumed as  

𝑅𝑅𝐸𝐸𝐸𝐸,𝑡𝑡 = 𝐵𝐵𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +
ℎ𝐸𝐸𝐸𝐸,𝑡𝑡𝑃𝑃𝑗𝑗,𝑡𝑡

𝜎𝜎2 � ,∀𝑡𝑡 ∈ Ӻ, 𝑗𝑗 ∈ 𝛭𝛭           (8) 

Bu  is the total bandwidth and σ is the noise power. 

 

Figure 1 Articulation of B5G MEC system 

The articulation of the proposed B5G MEC system is 
shown in figure 1, It comprised of heterogeneous 
network with small BS and Macro BS to the core 
network or MEC server. If the wireless backhaul is 
overloaded due to resource allocation, task offloading 
may suffer from high transmission delays. Task 
scheduling and computational offloading plays vital 
role in the backhaul communication. 

2.1 Task Scheduling Model 

In this work, each mobile device has a computational 
task computed locally in the region of MEC server 
which deployed near the SBS in the time slot t. The 
computing decision action is assumed as 𝑎𝑎𝑗𝑗𝑙𝑙 = 1 
representing task is offloaded if it is 𝑎𝑎𝑗𝑗𝑙𝑙 = 0 means the 



 

task is computed. Execution time and battery usage are 
used to differentiate between local and edge computing.  

2.1.1 Local Computing 

The computational ability is discriminated by means of 
the frequency cycle of CPU and is denoted as𝑓𝑓ℎ,𝐾𝐾. The 
local task execution time is calculated using [5] 

𝑇𝑇𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐿𝐿𝑗𝑗,𝑡𝑡
𝑓𝑓ℎ,𝐾𝐾

                   (9) 

where 𝐿𝐿𝑗𝑗,𝑡𝑡 is the CPU cycle essential to complete a task 
of the edge device. At the same time the energy 
consumption for execution is given by 

𝐸𝐸𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑘𝑘𝐿𝐿𝑗𝑗,𝑡𝑡𝑓𝑓𝑘𝑘𝑘𝑘,𝑡𝑡
2                          (10) 

The switched capacitance of the edge device is denoted 
as K. we consider that  𝑘𝑘 = 10−28 [11].  

The inclusion of local execution time and energy 
consumption results in the overall cost of task execution 
[5],  

𝑈𝑈𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼1
𝑙𝑙 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

max 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
+ 𝛽𝛽2

𝑙𝑙 𝐸𝐸𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

max 𝐸𝐸𝑘𝑘
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                        (11) 

𝛼𝛼1
𝑙𝑙   and 𝛽𝛽2

𝑙𝑙  are the weights to control over the 
computing phase. 

2.2 Task Offloading Model 

Task is offloaded when the computing resources are 
running out of memory, The task are of two types such 
as delay-sensitive and energy-sensitive which are 
varying with sizes and computational requirements. so 
the generated tasks are continuously dropped. The 
formula for calculating transmission delay and energy 
consumption are as follows, 

𝑇𝑇𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡𝑡𝑡 =

𝑠𝑠𝑗𝑗,𝑡𝑡
𝑅𝑅𝑗𝑗,𝑡𝑡

             (12) 

𝑇𝑇𝑘𝑘
𝑀𝑀𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 =

𝐿𝐿𝑗𝑗,𝑡𝑡
𝑓𝑓ℎ,𝑘𝑘

                            (13) 

𝐸𝐸𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑗𝑗,𝑡𝑡𝑇𝑇𝑘𝑘

𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡𝑡𝑡                              (14) 

𝐸𝐸𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝐻𝐻𝐿𝐿𝑗𝑗,𝑡𝑡𝑓𝑓ℎ,𝑘𝑘

2                              (15) 

The effective switched capacitance 𝑘𝑘𝐻𝐻 and is set to the 
value of 10-28 Farad. We consider a high speed 
processor with a clock frequency of f = 2.4 GHz, the 
cycle length is derived from the clock frequency Lj,t =
1/f, which results approximately as 0.5 ns, using an 
effective switched capacitance value and clock cycle 
values, the energy consumption is calculated as 1 ×
10−28 watts. Smartphones and Internet of Things end 
nodes are edge devices that must adhere to strict energy 
constraints. The effective switched capacitance should 
be chosen to guarantee practical viability in energy 
models for low-power processors. The theoretical 
extreme energy efficiency in computational modeling is 
reflected in this ultra-small power consumption 
estimate, especially in mobile edge computing scenarios 
with advanced nanotechnology concerns. For this 
reason, in accordance with CMOS standards, we have 
selected the switching capacitance value 10-28 Farad as 
low as feasible on MEC energy consumption, 
particularly with task offloading and computational 
efficiency in order to stay consistent with earlier 
benchmarks. 

The computational delay of a task can be calculated 
using the sum of communication/transmission delay and 
the execution delay from MEC server to edge devices. 

𝑇𝑇𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑘𝑘
𝑀𝑀𝑀𝑀𝐶𝐶,𝑡𝑡𝑡𝑡 + 𝑇𝑇𝑘𝑘

𝑀𝑀𝑀𝑀𝑀𝑀,𝑒𝑒𝑒𝑒𝑒𝑒                          (16) 

𝐸𝐸𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐸𝐸𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡𝑡𝑡 + 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀,𝑒𝑒𝑒𝑒𝑒𝑒          (17) 

The total cost is calculated as 

𝑈𝑈𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝛼𝛼1
𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑘𝑘

𝑀𝑀𝑀𝑀𝑀𝑀

max 𝑇𝑇𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽2

𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀

max 𝐸𝐸𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀     (18) 

The total cost for edge execution is derived as 

𝑈𝑈𝑘𝑘𝑀𝑀𝑀𝑀 = 𝛼𝛼1
𝑀𝑀𝑀𝑀 𝑇𝑇𝑘𝑘

𝑀𝑀𝑀𝑀

max 𝑇𝑇𝑘𝑘
𝑀𝑀𝑀𝑀 + 𝛽𝛽2

𝑀𝑀𝑀𝑀 𝐸𝐸𝑘𝑘
𝑀𝑀𝑀𝑀

max 𝐸𝐸𝑘𝑘
𝑀𝑀𝑀𝑀  (19) 

• The computational effort is determined by weights in 
the areas of energy consumption and latency in the task 
transmission, edge computing, and result transmission 
phases. 

The main objective is to formulate the sequential task 
function R and is denoted as 



 

𝑈𝑈𝑗𝑗 = ∑ 𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖 = ∑ 𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 +𝑙𝑙
𝑖𝑖=0

𝐵𝐵
𝑘𝑘=1 𝑎𝑎𝑗𝑗1�1 −

𝑎𝑎𝑗𝑗2�𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑗𝑗1�1 − 𝑎𝑎𝑗𝑗2�𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙         (20) 

The total size is represented as B in a set R. 
Furthermore the above problem is formulated as 

𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴 = �𝑈𝑈𝑗𝑗
𝑗𝑗

 

𝑠𝑠. 𝑡𝑡 𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝑇𝑇𝑘𝑘𝑘𝑘,𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑗𝑗1�1 − 𝑎𝑎𝑗𝑗2�𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖

𝑀𝑀𝑀𝑀 + �1 − 𝑎𝑎𝑗𝑗1�𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒 ≤
𝑇𝑇𝑘𝑘𝑘𝑘,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 ,∀𝑘𝑘 = 1, … … … ,𝐵𝐵       (21) 

A is the set of tasks to be completed within the time slot 
𝑇𝑇𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚. The optimal offloading action is needed to be a 
decision variable that indicates the decision to reduce 
the overall system cost. In order to determine the best 
choice within a time slot, network data such as job 
information and processing capacity are utilized. The 
traditional methods such as NP-hard, MINLP and non-
convex optimization are not much effective due to the 
intelligence. That’s why we consider the RL based 
Markov decision process making (MDP) learning to 
provide more efficient decision to schedule/offload a 
task. 

3. RL Based MDP Framework 

The traditional methods are not efficient in optimization 
due to the following reasons. 1. The task specific 
environments are dynamic in nature due to traffic, load, 
and delay characteristics. Traditional optimization 
techniques cannot handle the dynamic behavior of the 
MEC B5G network. 2. Due to the lengthy convergence 
of time and scalability problem intelligent decision 
making is required to offload. 3. Prior knowledge about 
the network environment is a challenging task for the 
traditional techniques. But RL based MDP technique 
follows the learning by using trial and error method. To 
address the above shortcomings, we propose the RL 
based MDP algorithm as a model-free methodology so 
as to make intelligent decisions and information 
exchange between agents (Mobile Edge device).  To 
demonstrate the RL understanding of the suggested 
MEC system, following are the brief description, 

3.1.1 State Space Sj,t 

The set of input metrics of each agent for task 
offloading decision occupies as a state space 𝑆𝑆𝑗𝑗,𝑡𝑡 =

{𝐷𝐷, 𝑐𝑐, 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑}. The symbol set represents the size D 
of the network, c is the cycle with computational 
capability f and energy-sensitive or delay sensitive is 
the type of task and can be chosen as  𝑑𝑑𝑑𝑑 ∈ [0,1]  

3.1.2 Action Space 𝑎𝑎𝑗𝑗,𝑡𝑡 

Each mobile device can choose a particular action in a 
given time slot t. according to the local information 
from the MEC network. The action can be of binary 
offloading either to be executed or to be offloaded. 

3.1.3 Reward function 𝑟𝑟𝑗𝑗,𝑡𝑡 

The proposed RL framework optimizes the 
computational capacity by means of selecting the 
cumulative reward function as the decision based upon 
the reward function as follows 

𝑟𝑟𝑗𝑗,𝑡𝑡 = −𝑎𝑎𝑗𝑗2𝑎𝑎𝑗𝑗1
𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀

max𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑎𝑎𝑗𝑗1�1 − 𝑎𝑎𝑗𝑗2�

𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖
𝑀𝑀𝑀𝑀

max𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖
𝑀𝑀𝑀𝑀 −

�1 − 𝑎𝑎𝑗𝑗2�
𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

max 𝑈𝑈𝑘𝑘𝑘𝑘,𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    (22) 

It indicates that the negative reward is given for higher 
cost function and vice versa. Then the utility function of 
each agent is denoted as 

𝑅𝑅𝑗𝑗,𝑘𝑘 = ∑ 𝑟𝑟𝑗𝑗,𝑘𝑘𝐵𝐵
𝑘𝑘=1                     (23) 

The reward utility function is formulated as  

𝑢𝑢𝑡𝑡
𝑗𝑗 = �

𝑝𝑝 𝑖𝑖𝑖𝑖 𝑟𝑟𝑗𝑗,𝑡𝑡 − 𝑟𝑟𝑗𝑗,𝑡𝑡−1 < 0 
𝑞𝑞 𝑖𝑖𝑖𝑖𝑟𝑟𝑗𝑗,𝑡𝑡 − 𝑟𝑟𝑗𝑗,𝑡𝑡−1 > 0
0           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

        (24) 

Case 1:  p represents the positive reward if the 
computational cost is low. 

Case 2: q represents the negative reward if the 
computational cost is high.  

We consider co-operative Q-learning for the 
information exchange between the agents.  As number 
of tasks is sent to the edge server, the pressure on 
mobile devices is lessened, as evidenced by the MEC 
server execution steadily increasing. Meanwhile, 
mobile execution remains relatively low but stable, 
suggesting that certain jobs are still completed locally. 

 



 

RL based Task offloading Algorithm 
(RLTOA) 
Initialize : Task Values for {𝐷𝐷 𝐶𝐶, 𝑓𝑓,𝑑𝑑𝑑𝑑}   

Ensure :
  
 

𝑑𝑑𝑑𝑑 ∈ [0,1]  
Episode counter b = 1 to Max 

for    episode =1 to max do 
for j=1 to M do 
for t=1 to T do 

Choose 
action 

: Random action 
Or based on ε-greedy policy 
Schedule Task or offload task based 
on the MEC server 

Calculate 
and 
Return 

: Reward utility function based on 
equation (24) 

Apply   Trial and error until 
𝑏𝑏 > 𝑚𝑚𝑚𝑚𝑚𝑚 

Return  end if 
end for 
end for  

 

3.2 RL Based Task offloading Algorithm 

The de-centralized multi-agent task computation 
offloading technique, which combines a MDP with Q-
learning to create an ideal offloading decision as 
illustrated, is the subject of the proposal in this section. 
It is built on the discussion from the previous section. 

In Figure 2, each agent will compute locally or on the 
MEC server whenever new tasks are created in each 
time slot. As per algorithm, researches the distributing 
policy offloading, and then decides on a course of 
action based on its knowledge of the surrounding area. 
It is then promptly rewarded for that action. The action 
probability and state function is updated every iterations 
to optimize the weights. 

Because the edge servers and BSs in a cluster are 
limited in this scenario, we may cycle through every 
conceivable combination of BSs and edge servers to 
find the optimal task offload rate. algorithm for task 
offloading based on reconstruction from reinforcement 
learning. It seeks to create a single collection of data by 
combining the Action policy and offloading. 

 

Figure 2 Articulation of RL based Task offloading. 

4  Results and Discussion 

The experimental results of RL based task offloading 
algorithm is tested and the comparison of results with 
conventional study through MATLAB simulation 
environment.  

MEC eanbled Hetnet is simulated to assess the 
effectiveness of our proposed offloading decision 
algorithm for MEC edge systems. We regard the mobile 
edge devices as being dispersed randomly and 
uniformly within a 500 m radius disc. Femtocells that 
enable multiple edge users (MUEs and FUEs) range in 
number from two to forty. Every time slot has exactly 
one active FUE and MUE. The following are the 
detailed tabulation of simulation parameters. 

Table 1 Simulation Parameters 

Parameters Value 
Macro cell 1 
No. of small cells 15 
Bandwidth 20 MHz 
Edge Bandwidth 1 MHz 
Channel Power gain 1.42 × 10−4 
Noise Power spectrum density  -174 dBm 
CPU cycles 0~1.75 GHz 
Task size  2-25 Mb 
Computational capacity of MEC 
server 

20 GHz 

Computational capacity of MC 
server 

15 GHz 



 

Effective switched capacitance 10−28 Farad 
Learning Rate 0.001 
Discount factor 0.9 
Total episode (max) 2000 
Weights 𝛼𝛼1 𝑙𝑙 = 𝛼𝛼1 ℎ =  𝛼𝛼1 𝑒𝑒 
Weights 𝛽𝛽1 𝑙𝑙 = 𝛽𝛽1 ℎ =  𝛽𝛽1 𝑒𝑒 

0.5 

Total time steps per episode 100 
Length of each slot 1 sec 
 

The evaluation parameters are verified using MATLAB 
with a machine learning toolbox.  RL enabled edge-
computing setup is evaluated with average ratio of 
chosen modes to enable execution, drop and MEC 
server execution. 

The cumulative reward is assessed for the convergence 
analysis. Due to this fact, average cumulative reward 
values are stored. The proposed problem is formulated 
with a delay restriction, and A penalty factor of 3 is 
added to the reward value if tasks exceed the deadline 
in order to manage the learning advancement.. The 
number of iterations was set to 500, 1000 and 2000 
respectively to reduce the computational complexity. 
The proposed RLTOA show that when the iteration is 
reached to 500 times, the convergence stability is 
shown by using the loss function. The accuracy is 
validated with 96.34% , Figures 3 and 4 represent the 
mobile drop, MEC edge computing and local 
computing. That requires numerous interactions. 
Speciously,. The QoS parameters SNR, Battery energy, 
computational speed and energy efficiency (EE) are the 
key parameters for performance analysis. The results 
include the training phase and evaluation shows the 
training phase of the proposed RLTOA. The online 
learning system trains the agent to learn from the 
dynamic environment through trial and error. The 
delay-sensitive and intensive operation is checked with 
the MUEs and FUEs. The reward function designed to 
guarantee the QoS of UEs at the time slot. The RL 
optimization for the computational execution cost and 
average energy is shown in figures 3 and 4. To ensure 
that the task is completed, the MUE must meet a 
specific QoS standard that is consistently higher than a 
set threshold at all times. 

 

 

Figure 3 Average ratios of Task Execution 
Strategies in Mobile Edge Computing 

 

 

Figure 4 Average Performance Metrics of Task 
Execution Strategies  

Figure 3 and 4 depict the average ratio of execution and 
drop in a given time, There are different access 
possibilities for executing the total number of tasks in s 
given slot. The number of agents and their capacity to 
do the computing work determine the overall average 
cost. When compared to local, edge, and Q-learning 
networks, RLTOA is found to have a lower average 
cost. The suggested RLTOA controls the computational 
complexity as the number of agent’s increases. As a 
result, the outcomes were better than the handling 
capacity when there were more agents. When compared 
to the three benchmarks, RLTOA eliminates the 
scalability problem.  Overall, the pattern points to an 
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adaptive execution strategy in which task offloading 
improves with time, resulting in fewer task drops and 
better use of available resources. Figures 5 and 6 
represent the average execution cost and battery energy 
level of the edge user. The graphical illustration shows 
how effective the computing capacity interms of their 
execution cost and battery energy. The computation-
intensive application from the ground edge level to the 
MEC server execution cost is reduced due to the 
shifting from local computing to edge node. The 
processing delays are significantly reduced thereby 
improving energy efficient task transmission. 

 

Figure 5 Temporal Evolution of Cumulative Cost of 
MEC 

 

 

Figure 6 Battery Energy consumption dynamics in 
MEC  

The battery energy level based on the the latency is 
shown in Figure 7. Whenever the job size increases, so 

increases task execution delay, since they depends on 
the CPU cycles to complete the process. Computational 
speed depends on how large the task size and how the 
delay rises. 

 

. 

Figure 7 Dynamic resource allocation strategies 
across different execution modes 

Tables 2 and 3 present the computational power and 
task size results for the RLTOA in terms of cost and 
delay performance. The speed of computing for edge 
users is influenced by the time it takes to execute tasks. 

 

Figure 8 Energy consumption decay of RLTOA 

The ability of processing capacity was 2.4 GHz, It is 
evidenced that the computing power increases when the 
computation time decreases. As a result agents are 
monitored as energy-intensive applications. The 
convergence of RLTOA is shown in figure 8 for the 
energy-intensive applications. The algorithm operates 
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by learning optimal computational offloading strategies 
between mobile devices and edge servers through a 
deep reinforcement learning approach. The energy 
consumption decays over iterations. 

Table 2 and 3 Comparative Analysis with Existing 
system 

 Table 2 Total Cost Performance 

Contribut
ers 

Algori
thm 

Avg 
cost 

Avg cost 
with 
computat
ional 
capacity 

Avg cost 
varying 
with 
offloadin
g task 
size 

[11] Local 40.25 70.55 26.50 

[18] Edge 35.20 68.95 20.20 

[22] DQN 24.35 63.50 17.50 

Proposed 
method 

RL 

TOA 

20.2 55 12.5 

 

Table 3 Energy Consumption Performance 

Contrib
uters 

Algori
thm 

Avg 
EC(J
oules) 

Avg EC 
with 
computati
onal 
capacity 

Avg EC 
varying 
with 
offloading 
task size 

[11] Local 28.36 48.45 49.25 

[18] Edge 22.45 43.25 45.50 

[22] DQN 19.10 39.35 40.87 

Propose
d 
method 

RLTO
A 

18.16 37.62 38.25 

 

The suggested RL-based edge computing algorithm's 
effectiveness was demonstrated by the average total 
cost associated with computing power and energy 

consumption. . The numbers in the list are [18, 22, 23, 
11]. The suggested RLTOA lowered the offloading 
expense and average execution cost by 52.13%, 43.5%, 
and 28.7% in computational cost, task size, and drop. 
Tables 2 and 3 thoroughly analyzed the impact of the 
suggested RLTOA when compared DQN, as well as 
local and edge computing. The results show how 
battery energy usage and job execution timing are 
affected by task size and processor power. RLTOA 
outperforms conventional techniques by 4% and 10%, 
respectively, during testing. Energy utilization is 
adequate since it has a major effect on overall expenses 
and task completion time. The hierarchical architecture 
for task execution is one of the parameters attributed to 
the RLTOA method. 2) A new reward function for task 
delegation in an RL framework. 3) By implementing 
RLTOA with reduced complexity and minimal 
processing delay, the overestimation problem is 
intended to be addressed. 

5. Conclusion  
 
The suggested RLTOA approach has been executed 
with successful outcomes in computation offloading. 
Offloading facilitation is carried out by the ground edge 
server, assisting edge users with demanding 
computations, ensuring the successful fulfillment of all 
offloading and execution responsibilities. Energy 
consumption and task execution latency are reduced by 
offloading the task. The RL framework assists in 
optimizing costs and computational power by 
calculating a weighted sum average. An agent achieves 
optimal results by undergoing intense training and 
selecting the most effective offloading strategy, while 
making decisions based on the new reward functions of 
the suggested RLTOA plan. Finally, the RLTOA 
convergence is evaluated using simulation. The 
performance analysis is compared with the DQN, Edge 
and local system performance. 
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