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Abstract: Scintillator detectors, widely used in nuclear medicine and industrial applications such as radiation monitoring and

material analysis, are sensitive to both neutrons and gamma rays (n/y). A key challenge in neutron detection is minimizing gamma-
ray interference to ensure accurate measurements. Neutron-gamma discrimination is difficult because the two particle types often
produce overlapping signals in scintillator detectors, with similar pulse amplitudes but subtle differences in shape and timing.
Traditional methods struggle to distinguish these subtle features, leading to misclassification and reduced detection accuracy.To
address this, we propose a deep neural network (DNN)-based approach combined with pulse shape discrimination (PSD) techniques
to achieve high-precision particle discrimination in mixed n/y fields. Leveraging DNN's ability to learn complex patterns, our method
effectively classifies neutron and gamma-ray pulses. The trained DNN model was evaluated against traditional discrimination
algorithms, including the charge comparison method, rise-time analysis, frequency-domain gradient analysis, and K-means clustering.
Quantitative results demonstrate a discrimination accuracy of 99%, significantly outperforming conventional techniques. Furthermore,
the proposed DNN method not only enhances discrimination reliability in mixed radiation fields but also reduces processing time
compared to existing methods, making it suitable for real-time applications in medical imaging and industrial neutron detection.
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Izboljsana razlocevanje med nevtroni in gama
Zarki z uporabo globokih nevronskih mrez za
natancno nuklearno medicine

Izvlecek: Scinilatorji, ki se pogosto uporabljajo v nuklearni medicini in industrijskih aplikacijah, kot so nadzor sevanja in analiza
materialov, so obcutljivi tako na nevtrone kot na gama zarke (n/y). Klju¢ni izziv pri zaznavanju nevtronov je zmanjsanje motenj gama
Zarkov, da se zagotovijo natancne meritve. Razlikovanje med nevtroniin gama Zarki je teZko, ker ti dve vrsti delcev v scinilatorjih
pogosto proizvajajo prekrivajoce se signale s podobnimi amplitudami impulzov, vendar z neznatnimi razlikami v obliki in ¢asovnem
poteku. Tradicionalne metode tezko razlikujejo te subtilne znacilnosti, kar vodi do napacne klasifikacije in zmanjsane natan¢nosti
detekcije. Da bi to resili, predlagamo pristop, ki temelji na globoki nevronski mrezi (DNN) v kombinaciji s tehnikami razlikovanja oblike
impulza (PSD), da bi dosegli visoko natan¢no razlikovanje delcev v mesanih n/y poljih. Nasa metoda izkoris¢a sposobnost DNN za
ucenje kompleksnih vzorcev in uc¢inkovito razvrsca nevtronske in gama impulze. Usposobljeni model DNN je bil ocenjen v primerjavi
s tradicionalnimi algoritmi razlikovanja, vklju¢no z metodo primerjave naboja, analizo ¢asa vzpona, analizo gradienta v frekvenc¢nem
prostoru in zdruZevanjem K-povprecij. Kvantitativni rezultati kaZzejo 99-odstotno natan¢nost razlikovanja, kar znatno presega
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zmogljivosti konvencionalnih tehnik. Poleg tega predlagana metoda DNN ne le izboljsa zanesljivost razlikovanja v mesanih sevalnih
poljih, ampak tudi skrajsa ¢as obdelave v primerjavi z obstojecimi metodami, zaradi ¢esar je primerna za uporabo v realnem ¢asu v

medicinskih slikah in industrijskem zaznavanju nevtronov.

Klju¢ne besede: neutroni in gama Zarki, globoka nevronska mreza, razlikovanje oblike impulza
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1 Introduction

Neutron detection technology plays a crucial role in
various applications within nuclear medicine, includ-
ing material analysis for medical isotopes [1], ensuring
safety in radiopharmaceutical handling [2-3], moni-
toring environmental radioactivity that could impact
healthcare facilities [4], and supporting advanced di-
agnostic imaging in aerospace medicine [5]. Addition-
ally, it is vital for the nuclear industry to ensure safe
and effective medical radioisotope production [6-11].
However, the challenge arises from the omnipresence
of y-rays in the vicinity of neutron sources. Scintillator
detectors, which are widely relied upon for neutron de-
tection, are also sensitive to y-rays [12]. This sensitivity
can compromise the accuracy of neutron detection,
underscoring the need to enhance detector perfor-
mance through the development of effective discrimi-
nation techniques.

In 1958, Owen [13] first discovered the property of dif-
ferent decay times of blinking light produced by n/y
interacting with scintillator materials, then proposed
a pulse shape discrimination (PSD) technique and suc-
cessfully discriminated n/y mixed signals using the
PSD technique based on analogue circuits. As a result,
a large number of researchers have combined digital
techniques with earlier discrimination methods that
required the construction of analogue circuits, while
other digital-based n/y discrimination algorithms
have also been proposed. For example, Jastaniah et al.
[14] implemented a rise time algorithm in 2004 based
on digital techniques. In 2007, Flaska [15] achieved a
charge comparison algorithm and Liu [16] et al. pro-
posed a time-domain pulse gradient algorithm [17],
which can reduce the effect of time-domain noise on
the discrimination results of n/y pulse signals. In 2018,
Huang [18] applied the K-means clustering algorithm
to discriminate n/y mixed pulse signals to reduce the
influence of human factors in the processing. Howev-
er, these methods face inherent limitations, rise-time
analysis struggles with pulse pileup and electronic
noise, charge comparison fails when n/y pulses exhibit
similar charge distributions, and K-means clustering
requires pre-labeled data and performs poorly with
overlapping pulse features. Moreover, the above dis-
crimination methods can only extract signal features

256

from the time domain or frequency domain, relying on
a particular signal feature to identify and classify the
discriminated information, which requires a long calcu-
lation time for the n/y discrimination results.

Artificial intelligence (Al) techniques have developed
rapidly in recent years, and there has been a growing
trend to use deep learning (DL) methods to analyse
data. Deep learning generally refers to neural networks
consisting of interconnected artificial neurons, which
combine low-level features to create abstract high-
level attributes. It can be used to identify distributed
features in data, which plays a key role in modeling
artificial intelligence. The advent of this technology
offers a new perspective and an innovative approach
to the rapid prediction of complex tasks. DL is not only
applicable to computer science fields such as natural
language processing [19] and computer vision [20]
but also be applied to interdisciplinary studies such
as the mechanical design of materials [21], biosensors
[22], marine research [23], redox flow batteries [24],
and nanogenerator performance prediction [25]. The
combination of Al algorithms and PSD techniques has
evolved significantly, transitioning from early feature-
augmented approaches to hybrid systems that merge
PSD features with neural networks, and finally to mod-
ern end-to-end deep learning models capable of raw
pulse classification without manual feature extraction.
The combination of Al algorithms and PSD techniques
has also achieved good results in the field of n/y sig-
nal discrimination. In 1998, the first application of Al
algorithms to n/y signal discrimination was proposed
by Cao [26] et al., who used the time-of-flight method
to identify particle species and verify the feasibility of
the algorithm. Esposito [27] and Ronchi [28] used Al
algorithms to solve the signal stacking problem well
during 2004-2009, respectively. And then, Liu [29] and
Zhou [30] further developed neural network algo-
rithms in the field of n/y pulse signal discrimination.
Despite these advances, earlier Al methods still faced
challenges such as limited accuracy and high computa-
tional costs, necessitating further innovation in model
architecture and training efficiency.

This paper uses deep neural network (DNN) algorithms
to address the problems of n/y signal discrimination.
DNNs were specifically chosen for this task due to their
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exceptional capability in handling complex pattern
recognition problems, which can discover subtle, non-
linear relationships in the temporal and spectral char-
acteristics of n/y signals that are often imperceptible to
conventional analysis techniques. The test samples are
compared with the charge comparison algorithm, rise
time algorithm, frequency domain gradient analysis
algorithm, and K-means clustering algorithm, and the
DNN discrimination method can successfully discrimi-
nate n/y mixed pulse signals. The results show that the
proposed DNN discrimination method not only pro-
vides effective discrimination of the mixed radiation
fields but also improves the discrimination time com-
pared with other discrimination methods. This dual ad-
vantage of high accuracy and computational efficiency
makes the DNN approach particularly suitable for real-
time applications in nuclear medicine and industrial
radiation monitoring, where both precision and speed
are critical requirements.

2 Materials and methods

2.1 Scintillator detector principle

Neutrons cannot directly cause ionization or excita-
tion of matter, so they cannot be detected directly [31].
However, scintillator detectors are sensitive not only to
neutrons but also to y-rays, which can be helpful for the
detection of n/y mixed pulse signals [32]. When neu-
trons or y-rays are irradiated in the scintillator detec-
tor, the atoms in the astragalus crystal can be ionized
and excited. Weak scintillation photons are generated
when the atoms jump from the excited state back to the
ground state. The photomultiplier tube converts these
weak scintillations into photoelectrons after the photo-
electrons enter the photomultiplier tube through the
electro-optical input system. The photoelectrons are
multiplied and all electrons are collected by the anode
of the photomultiplier tube to form a pulse signal digi-
tal (PSD) and then enter the signal processing circuit
[33]. The commonly used scintillator neutron detector
consists of four parts, including scintillator material,

Scintillation Probe

Dynode / Digital HV Meter
c

71 Amplifer Circuit
Multi-channel or
Single-channel
\ High
| Voltage

\ \
j - \/ v Pc\(‘lcslnl \

Scintillator Cathode  ppotoelectron

Fluorescence Photon

\

Reflector ‘Window

Anode Cassette

Figure 1: Working principal diagram of scintillator de-
tector.
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photomultiplier tube, high voltage supply unit, and
electronics. The structure of the scintillator neutron de-
tector is shown in Fig. 1.

2.1 Data processing

We have considered the experiments in reference [34]
with a neutron source of *>Cf and a detector module us-
ing the plastic scintillator EJ-299-33. The power supply
unit provides the operating voltage for the photomul-
tiplier, which amplifies the scintillation light produced
by the scintillator under the irradiation of the neutron
source °2Cf and transforms it into a pulse signal. The
amplified signal is then transferred to a 12-bit 65 MS/
PS digital converter, where the ADC converts the ampli-
fied analog signal into a digital signal. The digital signal
is transmitted via an optical bridge to a computer for
subsequent processing and analysis.

Input Hidden

X “\
x2
"“ . L7 . 9 \ WX+b | ReLu| —Y—>
— :
. . 5 . xn /

neuron

Output

Figure 2: The workflow of the DNN modeling process.

As shown in Fig. 2, the DNN model with input, hidden,
and output layers are proposed to implement neutron
and y-rays discrimination. The layers of the model are
connected in a fully connected manner, with any neu-
ron in layer i necessarily connected to any neuron in
layer i+1 [35]. Each local model is composed of a linear
relationship and an activation function. The input x is
used to provide the initial information (including PSD
corresponding to neutrons and gamma rays), which is
then propagated to the hidden units in each layer to
produce the output categories y. The data information
flows forward through the network to achieve forward
propagation until a scalar cost function Cost is generat-
ed, and the back propagation is achieved when the in-
formation of the cost function flows backward through
the network to calculate the gradient. All data samples
are used for training and evaluation of the model, and
the cross-entropy loss error J(8) is used to evaluate the
accuracy of the model with the formula.

Cost =min, J(8) (M

JO=-3Y e +0-y)lod-F) @

Where 8 is the optimal parameters, N is the number of

samples, y_¥yis the DNN model output value, and
is the test value.
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The cost function can be decomposed into the sum of
the cost functions of each sample, and a small batch of
samples is drawn uniformly from the training set using
the stochastic gradient descent algorithm (SGD). When
the training set size M grows and m remains constant,
the estimate of the gradient g can be expressed as:

1 U . .
g= ﬁVHZ:Cost(x(’),y(’), 0)

i=1
0« 0-ag

where x is the i-th sample, y@ is the true label of the
i-th sample, and a is the learning rate.

The SGD enables the training of deep network models
on large-scale data. For a fixed-size model, the compu-
tation of each step of stochastic gradient descent up-
date does not depend on the size of the training set,
thus effectively reducing the computational cost of the
model with good fitting performance. The relevant pa-
rameter settings are as follows, the corresponding net-
work outputs of neutron and y-ray events are 1 and 0,
the epochs are 3000, the batch size is 256, the optimizer
is SGD, the learning rate is 0.000001, the momentum is
0.9, and the early stop is 200. The model environment is
aWindows 10 system, 2.3 GHz Intel Core (TM) i7-11800
H GPU, 16.0 GB memory, 3050Ti graphics card, utilizing
Python 3.8, Pytorch 1.9.0 + cuda 11.1.

3 Results

3.1 Discrimination results based on DNN

In this research, the data of neutron pulse signal and
y-rays pulse signal from 252Cf scintillation detectors
are extracted using Python tools, and the sampled
7291 pulse signals are used to construct the data set,
which is divided into an 80% training set and a 20%
test set. The deep neural network algorithm model
is constructed to achieve the classification process of
neutron and y-rays particle identification, as shown in
Fig. 3 and Fig. 4. The training samples of 5832 pulse sig-
nals are fed into the DNN model, and the discrimina-
tion results of the training set are shown in Fig. 3. The
neutron and gamma samples in the training set are
well discriminated out. Fig. 4 shows the discrimination
results of 1459 test samples of n/y mixed pulse signals
into the trained DNN network. Since the pulse signals
in both the training and test sets are well discriminated
out, the DNN model can separate the mixed n/y well.
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3.2 Comparative analysis of results
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Figure 3: The discrimination results of DNN on the
training set. Blue means neutrons and red means gam-
ma rays.
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Figure 4: The discrimination results of DNN on the test
set. Blue means neutron and red means gamma rays.

The discrimination results using the charge compari-
son algorithm (Fig. 5a), the rise time algorithm (Fig. 5b),
the frequency domain gradient analysis algorithm (Fig.
5¢), and the K-means clustering algorithm (Fig. 5d) are
shown in Fig. 5, respectively. The five discrimination
methods are used to discriminate the same 5000 sets
of n/y mixed pulse signals and the results showed that
they are all successful in discriminating the n/y mixed
pulse signals, as shown in Table 1. In terms of discrimi-
nation accuracy, the discrimination accuracy rate (DAR)
is improved compared to other discrimination algo-
rithms, the DNN achieves the highest accuracy (DAR_N:
99.60%, DAR_G: 99.93%), outperforming charge com-
parison (99.20%, 99.86%) due to its ability to automati-
cally learn subtle pulse-shape features. Rise-time analy-
sis shows significantly lower neutron accuracy (89.75%,
98.19%) because of overlapping rise times in mixed ra-
diation fields, while K-means clustering performs worst
(75.77%, 95.72%) as its unsupervised approach strug-
gles with overlapping pulse distributions. In terms of
speed, the DNN is fastest (1.6s), being twice as quick
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as traditional methods (3-4s) and four times faster
than K-means (6.4s), thanks to GPU processing. Tradi-
tional methods like charge comparison and frequency-
domain gradient analysis are slower due to per-pulse
mathematical operations, while K-means suffers from
iterative distance calculations. The DNN clearly pro-
vides the best balance, offering superior accuracy with
significantly reduced processing time, making it ideal
for real-time applications. Charge comparison remains
a viable alternative where marginal accuracy loss is ac-
ceptable or DNN deployment is constrained, whereas
K-means should only be considered when labeled
training data is unavailable. The results demonstrate
that while all methods can discriminate n/y pulses, the
DNN delivers optimal performance where both preci-
sion and speed are critical.

| N Pre N -N Mea_ N |

|NPre7G - NMeafG |

DAR , =(1- )x100% (6)

Mea G

Where N, represents the number of correctly dis-
criminated neutron pulse signals, N,, - represents the
number of neutron pulse signals tested, N, . repre-
sents the number of correctly discriminated gamma
pulse signals, and N, . represents the number of

gamma pulse signals tested.

In implementing the five discrimination algorithms,
it is found that each discrimination method has its
advantages. The charge comparison algorithm is the
simplest in principle, therefore, the easiest of all the
discrimination methods to implement. Although the
largest difference between the neutron and y-ray pulse
signals is only in the falling edge of the pulse, the ris-

DAR N:(l_ )x100% (5) ing time algorithm maximizes the difference between
- Mea N the two particle-induced signals by taking into ac-
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Figure 5: Four discrimination algorithms. (a) Charge comparison integration time scale diagram and charge com-
parison algorithm discrimination results. (b) Signal of time integration and rise time algorithm discrimination results.
(c) The spectrum graph of the n/y signal and the discrimination result of the frequency domain gradient analysis
algorithm. (d) Two cluster centers are determined by K-means and the after-time integration result of the K-means

clustering algorithm.

Table 1: Comparison of the results of five n/y discrimination methods

Method Neutron Gamma DAR_N DAR_G Time
Charge Comparison 757 4243 99.20% 99.86% 34s
Rise time 828 4172 89.75% 98.19% 3.5s
Frequency Gradient Analysis 742 4258 98.80% 99.79% 3.9s
K-means Clustering 933 4067 75.77% 95.72% 6.4s
DNN 748 4252 99.60% 99.93% 1.65
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count the rising and falling edges of the entire pulse
signal in extracting the eigenvalues. The frequency
domain gradient analysis algorithm is more resistant
to interference by extracting features in the frequency
domain, so it is not sensitive to changes in the shape
of the pulse caused by noise. The K-means clustering
algorithm does not rely on the selection of time win-
dows to extract features in the separation of n/y mixed
pulse signals and can make direct judgments on signal
categories without the need for prior parameter ad-
justment. However, the existing discrimination meth-
ods need to be further improved in terms of discrimi-
nation time and accuracy. The number of n/y obtained
using the five discrimination methods in this paper is
relatively consistent, indicating that the discrimination
process based on the DNN algorithm in this paper can
successfully discriminate n/y mixed pulse signals. This
method enables the accuracy of n/y mixed pulse signal
discrimination to be improved and the computation
time to be reduced.

4 Conclusions

This paper investigates the discrimination of neutrons
and vy rays from scintillator detectors by combining
PSD and DNN algorithms. The particle pulse signal data
samples are collected from the scintillator detector
and divided into training and test samples. We use the
training samples to train the DNN model and realize the
discrimination of the particles in the test samples. We
compare the result with other discrimination methods,
such as the charge comparison algorithm, the rise time
algorithm, the frequency domain gradient analysis al-
gorithm, and the K-means clustering algorithm. The
five discrimination methods are applied to the same
5000 sets of n/y mixed pulse signals. The results show
that all five methods can successfully discriminate the
n/y mixed pulse signals, and the number of n/y ob-
tained is more consistent. In addition, the DNN method
has improved the discrimination time compared with
other methods, indicating that the DNN model pro-
posed in this paper is feasible for n/y discrimination.
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