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Abstract: Scintillator detectors, widely used in nuclear medicine and industrial applications such as radiation monitoring and 
material analysis, are sensitive to both neutrons and gamma rays (n/γ). A key challenge in neutron detection is minimizing gamma-
ray interference to ensure accurate measurements. Neutron-gamma discrimination is difficult because the two particle types often 
produce overlapping signals in scintillator detectors, with similar pulse amplitudes but subtle differences in shape and timing. 
Traditional methods struggle to distinguish these subtle features, leading to misclassification and reduced detection accuracy.To 
address this, we propose a deep neural network (DNN)-based approach combined with pulse shape discrimination (PSD) techniques 
to achieve high-precision particle discrimination in mixed n/γ fields. Leveraging DNN‘s ability to learn complex patterns, our method 
effectively classifies neutron and gamma-ray pulses. The trained DNN model was evaluated against traditional discrimination 
algorithms, including the charge comparison method, rise-time analysis, frequency-domain gradient analysis, and K-means clustering. 
Quantitative results demonstrate a discrimination accuracy of 99%, significantly outperforming conventional techniques. Furthermore, 
the proposed DNN method not only enhances discrimination reliability in mixed radiation fields but also reduces processing time 
compared to existing methods, making it suitable for real-time applications in medical imaging and industrial neutron detection.

Keywords: neutrons and gamma rays, deep neural network, pulse shape discrimination

Izboljšana razločevanje med nevtroni in gama 
žarki z uporabo globokih nevronskih mrež za 
natančno nuklearno medicine
Izvleček: Scinilatorji, ki se pogosto uporabljajo v nuklearni medicini in industrijskih aplikacijah, kot so nadzor sevanja in analiza 
materialov, so občutljivi tako na nevtrone kot na gama žarke (n/γ). Ključni izziv pri zaznavanju nevtronov je zmanjšanje motenj gama 
žarkov, da se zagotovijo natančne meritve. Razlikovanje med nevtroni in gama žarki je težko, ker ti dve vrsti delcev v scinilatorjih 
pogosto proizvajajo prekrivajoče se signale s podobnimi amplitudami impulzov, vendar z neznatnimi razlikami v obliki in časovnem 
poteku. Tradicionalne metode težko razlikujejo te subtilne značilnosti, kar vodi do napačne klasifikacije in zmanjšane natančnosti 
detekcije. Da bi to rešili, predlagamo pristop, ki temelji na globoki nevronski mreži (DNN) v kombinaciji s tehnikami razlikovanja oblike 
impulza (PSD), da bi dosegli visoko natančno razlikovanje delcev v mešanih n/γ poljih. Naša metoda izkorišča sposobnost DNN za 
učenje kompleksnih vzorcev in učinkovito razvršča nevtronske in gama impulze. Usposobljeni model DNN je bil ocenjen v primerjavi 
s tradicionalnimi algoritmi razlikovanja, vključno z metodo primerjave naboja, analizo časa vzpona, analizo gradienta v frekvenčnem 
prostoru in združevanjem K-povprečij. Kvantitativni rezultati kažejo 99-odstotno natančnost razlikovanja, kar znatno presega 
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zmogljivosti konvencionalnih tehnik. Poleg tega predlagana metoda DNN ne le izboljša zanesljivost razlikovanja v mešanih sevalnih 
poljih, ampak tudi skrajša čas obdelave v primerjavi z obstoječimi metodami, zaradi česar je primerna za uporabo v realnem času v 
medicinskih slikah in industrijskem zaznavanju nevtronov.

Ključne besede: neutroni in gama žarki, globoka nevronska mreža, razlikovanje oblike impulza
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1 Introduction

Neutron detection technology plays a crucial role in 
various applications within nuclear medicine, includ-
ing material analysis for medical isotopes [1], ensuring 
safety in radiopharmaceutical handling [2-3], moni-
toring environmental radioactivity that could impact 
healthcare facilities [4], and supporting advanced di-
agnostic imaging in aerospace medicine [5]. Addition-
ally, it is vital for the nuclear industry to ensure safe 
and effective medical radioisotope production [6-11]. 
However, the challenge arises from the omnipresence 
of γ-rays in the vicinity of neutron sources. Scintillator 
detectors, which are widely relied upon for neutron de-
tection, are also sensitive to γ-rays [12]. This sensitivity 
can compromise the accuracy of neutron detection, 
underscoring the need to enhance detector perfor-
mance through the development of effective discrimi-
nation techniques.

In 1958, Owen [13] first discovered the property of dif-
ferent decay times of blinking light produced by n/γ 
interacting with scintillator materials, then proposed 
a pulse shape discrimination (PSD) technique and suc-
cessfully discriminated n/γ mixed signals using the 
PSD technique based on analogue circuits. As a result, 
a large number of researchers have combined digital 
techniques with earlier discrimination methods that 
required the construction of analogue circuits, while 
other digital-based n/γ discrimination algorithms 
have also been proposed. For example, Jastaniah et al. 
[14] implemented a rise time algorithm in 2004 based 
on digital techniques. In 2007, Flaska [15] achieved a 
charge comparison algorithm and Liu [16] et al. pro-
posed a time-domain pulse gradient algorithm [17], 
which can reduce the effect of time-domain noise on 
the discrimination results of n/γ pulse signals. In 2018, 
Huang [18] applied the K-means clustering algorithm 
to discriminate n/γ mixed pulse signals to reduce the 
influence of human factors in the processing. Howev-
er, these methods face inherent limitations, rise-time 
analysis struggles with pulse pileup and electronic 
noise, charge comparison fails when n/γ pulses exhibit 
similar charge distributions, and K-means clustering 
requires pre-labeled data and performs poorly with 
overlapping pulse features. Moreover, the above dis-
crimination methods can only extract signal features 

from the time domain or frequency domain, relying on 
a particular signal feature to identify and classify the 
discriminated information, which requires a long calcu-
lation time for the n/γ discrimination results.

Artificial intelligence (AI) techniques have developed 
rapidly in recent years, and there has been a growing 
trend to use deep learning (DL) methods to analyse 
data. Deep learning generally refers to neural networks 
consisting of interconnected artificial neurons, which 
combine low-level features to create abstract high-
level attributes. It can be used to identify distributed 
features in data, which plays a key role in modeling 
artificial intelligence. The advent of this technology 
offers a new perspective and an innovative approach 
to the rapid prediction of complex tasks. DL is not only 
applicable to computer science fields such as natural 
language processing [19] and computer vision [20] 
but also be applied to interdisciplinary studies such 
as the mechanical design of materials [21], biosensors 
[22], marine research [23], redox flow batteries [24], 
and nanogenerator performance prediction [25]. The 
combination of AI algorithms and PSD techniques has 
evolved significantly, transitioning from early feature-
augmented approaches to hybrid systems that merge 
PSD features with neural networks, and finally to mod-
ern end-to-end deep learning models capable of raw 
pulse classification without manual feature extraction. 
The combination of AI algorithms and PSD techniques 
has also achieved good results in the field of n/γ sig-
nal discrimination. In 1998, the first application of AI 
algorithms to n/γ signal discrimination was proposed 
by Cao [26] et al., who used the time-of-flight method 
to identify particle species and verify the feasibility of 
the algorithm. Esposito [27] and Ronchi [28] used AI 
algorithms to solve the signal stacking problem well 
during 2004-2009, respectively. And then, Liu [29] and 
Zhou [30] further developed neural network algo-
rithms in the field of n/γ pulse signal discrimination. 
Despite these advances, earlier AI methods still faced 
challenges such as limited accuracy and high computa-
tional costs, necessitating further innovation in model 
architecture and training efficiency.

This paper uses deep neural network (DNN) algorithms 
to address the problems of n/γ signal discrimination. 
DNNs were specifically chosen for this task due to their 
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exceptional capability in handling complex pattern 
recognition problems, which can discover subtle, non-
linear relationships in the temporal and spectral char-
acteristics of n/γ signals that are often imperceptible to 
conventional analysis techniques. The test samples are 
compared with the charge comparison algorithm, rise 
time algorithm, frequency domain gradient analysis 
algorithm, and K-means clustering algorithm, and the 
DNN discrimination method can successfully discrimi-
nate n/γ mixed pulse signals. The results show that the 
proposed DNN discrimination method not only pro-
vides effective discrimination of the mixed radiation 
fields but also improves the discrimination time com-
pared with other discrimination methods. This dual ad-
vantage of high accuracy and computational efficiency 
makes the DNN approach particularly suitable for real-
time applications in nuclear medicine and industrial 
radiation monitoring, where both precision and speed 
are critical requirements.

2 Materials and methods

2.1 Scintillator detector principle

Neutrons cannot directly cause ionization or excita-
tion of matter, so they cannot be detected directly [31]. 
However, scintillator detectors are sensitive not only to 
neutrons but also to γ-rays, which can be helpful for the 
detection of n/γ mixed pulse signals [32]. When neu-
trons or γ-rays are irradiated in the scintillator detec-
tor, the atoms in the astragalus crystal can be ionized 
and excited. Weak scintillation photons are generated 
when the atoms jump from the excited state back to the 
ground state. The photomultiplier tube converts these 
weak scintillations into photoelectrons after the photo-
electrons enter the photomultiplier tube through the 
electro-optical input system. The photoelectrons are 
multiplied and all electrons are collected by the anode 
of the photomultiplier tube to form a pulse signal digi-
tal (PSD) and then enter the signal processing circuit 
[33]. The commonly used scintillator neutron detector 
consists of four parts, including scintillator material, 

photomultiplier tube, high voltage supply unit, and 
electronics. The structure of the scintillator neutron de-
tector is shown in Fig. 1.

2.1 Data processing

We have considered the experiments in reference [34] 
with a neutron source of 252Cf and a detector module us-
ing the plastic scintillator EJ-299-33. The power supply 
unit provides the operating voltage for the photomul-
tiplier, which amplifies the scintillation light produced 
by the scintillator under the irradiation of the neutron 
source 252Cf and transforms it into a pulse signal. The 
amplified signal is then transferred to a 12-bit 65 MS/
PS digital converter, where the ADC converts the ampli-
fied analog signal into a digital signal. The digital signal 
is transmitted via an optical bridge to a computer for 
subsequent processing and analysis.

Figure 2: The workflow of the DNN modeling process.

As shown in Fig. 2, the DNN model with input, hidden, 
and output layers are proposed to implement neutron 
and γ-rays discrimination. The layers of the model are 
connected in a fully connected manner, with any neu-
ron in layer i necessarily connected to any neuron in 
layer i+1 [35]. Each local model is composed of a linear 
relationship and an activation function. The input x is 
used to provide the initial information (including PSD 
corresponding to neutrons and gamma rays), which is 
then propagated to the hidden units in each layer to 
produce the output categories y. The data information 
flows forward through the network to achieve forward 
propagation until a scalar cost function Cost is generat-
ed, and the back propagation is achieved when the in-
formation of the cost function flows backward through 
the network to calculate the gradient. All data samples 
are used for training and evaluation of the model, and 
the cross-entropy loss error J(θ) is used to evaluate the 
accuracy of the model with the formula.

Cost min ( )J� �� 				    (1)
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Where θ is the optimal parameters, N is the number of 
samples, yn is the DNN model output value, and  ˆ

ny  
is the test value.Figure 1: Working principal diagram of scintillator de-

tector.

M. Jiang et al.; Informacije Midem, Vol. 55, No. 4(2025), 255 – 262



258

The cost function can be decomposed into the sum of 
the cost functions of each sample, and a small batch of 
samples is drawn uniformly from the training set using 
the stochastic gradient descent algorithm (SGD). When 
the training set size M grows and m remains constant, 
the estimate of the gradient g can be expressed as:

 ( ) ( )

1

1 Cost( , , )
M

m
i i

i
g x y� �

�

� � � 		  (3)

 g� � �� � 					     (4)

where x(i) is the i-th sample, y(i) is the true label of the 
i-th sample, and α is the learning rate.

The SGD enables the training of deep network models 
on large-scale data. For a fixed-size model, the compu-
tation of each step of stochastic gradient descent up-
date does not depend on the size of the training set, 
thus effectively reducing the computational cost of the 
model with good fitting performance. The relevant pa-
rameter settings are as follows, the corresponding net-
work outputs of neutron and γ-ray events are 1 and 0, 
the epochs are 3000, the batch size is 256, the optimizer 
is SGD, the learning rate is 0.000001, the momentum is 
0.9, and the early stop is 200. The model environment is 
a Windows 10 system, 2.3 GHz Intel Core (TM) i7–11800 
H GPU, 16.0 GB memory, 3050Ti graphics card, utilizing 
Python 3.8, Pytorch 1.9.0 + cuda 11.1.

3 Results

3.1 Discrimination results based on DNN

In this research, the data of neutron pulse signal and 
γ-rays pulse signal from 252Cf scintillation detectors 
are extracted using Python tools, and the sampled 
7291 pulse signals are used to construct the data set, 
which is divided into an 80% training set and a 20% 
test set. The deep neural network algorithm model 
is constructed to achieve the classification process of 
neutron and γ-rays particle identification, as shown in 
Fig. 3 and Fig. 4. The training samples of 5832 pulse sig-
nals are fed into the DNN model, and the discrimina-
tion results of the training set are shown in Fig. 3. The 
neutron and gamma samples in the training set are 
well discriminated out. Fig. 4 shows the discrimination 
results of 1459 test samples of n/γ mixed pulse signals 
into the trained DNN network. Since the pulse signals 
in both the training and test sets are well discriminated 
out, the DNN model can separate the mixed n/γ well.

3.2 Comparative analysis of results

Figure 3: The discrimination results of DNN on the 
training set. Blue means neutrons and red means gam-
ma rays.

Figure 4: The discrimination results of DNN on the test 
set. Blue means neutron and red means gamma rays.

The discrimination results using the charge compari-
son algorithm (Fig. 5a), the rise time algorithm (Fig. 5b), 
the frequency domain gradient analysis algorithm (Fig. 
5c), and the K-means clustering algorithm (Fig. 5d) are 
shown in Fig. 5, respectively. The five discrimination 
methods are used to discriminate the same 5000 sets 
of n/γ mixed pulse signals and the results showed that 
they are all successful in discriminating the n/γ mixed 
pulse signals, as shown in Table 1. In terms of discrimi-
nation accuracy, the discrimination accuracy rate (DAR) 
is improved compared to other discrimination algo-
rithms, the DNN achieves the highest accuracy (DAR_N: 
99.60%, DAR_G: 99.93%), outperforming charge com-
parison (99.20%, 99.86%) due to its ability to automati-
cally learn subtle pulse-shape features. Rise-time analy-
sis shows significantly lower neutron accuracy (89.75%, 
98.19%) because of overlapping rise times in mixed ra-
diation fields, while K-means clustering performs worst 
(75.77%, 95.72%) as its unsupervised approach strug-
gles with overlapping pulse distributions. In terms of 
speed, the DNN is fastest (1.6s), being twice as quick 
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as traditional methods (3-4s) and four times faster 
than K-means (6.4s), thanks to GPU processing. Tradi-
tional methods like charge comparison and frequency-
domain gradient analysis are slower due to per-pulse 
mathematical operations, while K-means suffers from 
iterative distance calculations. The DNN clearly pro-
vides the best balance, offering superior accuracy with 
significantly reduced processing time, making it ideal 
for real-time applications. Charge comparison remains 
a viable alternative where marginal accuracy loss is ac-
ceptable or DNN deployment is constrained, whereas 
K-means should only be considered when labeled 
training data is unavailable. The results demonstrate 
that while all methods can discriminate n/γ pulses, the 
DNN delivers optimal performance where both preci-
sion and speed are critical.

 
Pre_N Mea_N

_N
Mea_N

N -N
DAR =(1- ) 100%

N
� 		  (5)

 
Pre_G Mea_G

_G
Mea_G

N N
DAR (1 ) 100%

N
�

� � � 	 (6)

Where NPre_N represents the number of correctly dis-
criminated neutron pulse signals, NMea_N represents the 
number of neutron pulse signals tested, NPre_G repre-
sents the number of correctly discriminated gamma 
pulse signals, and NMea_G represents the number of 
gamma pulse signals tested.

In implementing the five discrimination algorithms, 
it is found that each discrimination method has its 
advantages. The charge comparison algorithm is the 
simplest in principle, therefore, the easiest of all the 
discrimination methods to implement. Although the 
largest difference between the neutron and γ-ray pulse 
signals is only in the falling edge of the pulse, the ris-
ing time algorithm maximizes the difference between 
the two particle-induced signals by taking into ac-

Figure 5: Four discrimination algorithms. (a) Charge comparison integration time scale diagram and charge com-
parison algorithm discrimination results. (b) Signal of time integration and rise time algorithm discrimination results. 
(c) The spectrum graph of the n/γ signal and the discrimination result of the frequency domain gradient analysis 
algorithm. (d) Two cluster centers are determined by K-means and the after-time integration result of the K-means 
clustering algorithm.

Table 1: Comparison of the results of five n/γ discrimination methods

Method Neutron Gamma DAR_N DAR_G Time
Charge Comparison 757 4243 99.20% 99.86% 3.4s
Rise time 828 4172 89.75% 98.19% 3.5s
Frequency Gradient Analysis 742 4258 98.80% 99.79% 3.9s
K-means Clustering 933 4067 75.77% 95.72% 6.4s
DNN 748 4252 99.60% 99.93% 1.6s

M. Jiang et al.; Informacije Midem, Vol. 55, No. 4(2025), 255 – 262
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count the rising and falling edges of the entire pulse 
signal in extracting the eigenvalues. The frequency 
domain gradient analysis algorithm is more resistant 
to interference by extracting features in the frequency 
domain, so it is not sensitive to changes in the shape 
of the pulse caused by noise. The K-means clustering 
algorithm does not rely on the selection of time win-
dows to extract features in the separation of n/γ mixed 
pulse signals and can make direct judgments on signal 
categories without the need for prior parameter ad-
justment. However, the existing discrimination meth-
ods need to be further improved in terms of discrimi-
nation time and accuracy. The number of n/γ obtained 
using the five discrimination methods in this paper is 
relatively consistent, indicating that the discrimination 
process based on the DNN algorithm in this paper can 
successfully discriminate n/γ mixed pulse signals. This 
method enables the accuracy of n/γ mixed pulse signal 
discrimination to be improved and the computation 
time to be reduced.

4 Conclusions

This paper investigates the discrimination of neutrons 
and γ rays from scintillator detectors by combining 
PSD and DNN algorithms. The particle pulse signal data 
samples are collected from the scintillator detector 
and divided into training and test samples. We use the 
training samples to train the DNN model and realize the 
discrimination of the particles in the test samples. We 
compare the result with other discrimination methods, 
such as the charge comparison algorithm, the rise time 
algorithm, the frequency domain gradient analysis al-
gorithm, and the K-means clustering algorithm. The 
five discrimination methods are applied to the same 
5000 sets of n/γ mixed pulse signals. The results show 
that all five methods can successfully discriminate the 
n/γ mixed pulse signals, and the number of n/γ ob-
tained is more consistent. In addition, the DNN method 
has improved the discrimination time compared with 
other methods, indicating that the DNN model pro-
posed in this paper is feasible for n/γ discrimination.
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