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Abstract: Active noise cancellation (ANC) is an essential feature of audio equipment that reduces unwanted background noise.
Unwanted signals in information bearing-signal referred to as noise, could degrade the strength of signals in terms of intelligibility
and quality. Over the decade, various researchers developed different algorithms to enhance speech signal quality and for noise
reduction. To address the issue, a Multitude Active Noise cancellation using White Shark Optimized Convolutional neural network
- Long short-term memory Network (MANC Net) has been proposed. Initially, Dual Tree Complex Wavelet Transform (DTCWT) is
utilized to enhance the quality of audio signal with a multitude noise and the signal features are extracted using a community
detection based Genetic Algorithm. Afterward based on extracted signal, interference and desired signals are classified using Hy-
brid Convolutional neural network - Long short-term memory (CNN-LSTM). Additionally, the hyperparameters of CNN-LSTM are
tuned using White Shark Optimization (WSO) for better accuracy. The efficiency of the proposed method is evaluated using accu-
racy, specificity, sensitivity, Normalized Mean Squared Error (NMSE), Short-Time Objective Intelligibility (STOI), and Perceptual Eval-
uation of Speech Quality (PESQ) parameter values in comparison with other conventional methods. The higher accuracy rate and
low NMSE in the classification of audio signals evidenced the efficacy of the proposed MANC Net model. The overall accuracy of
the proposed is 9.1%, 8.7%, 7.9%, 3.4%, and 1.5% better than Filtered-X Least Mean Square (FXLMS), deep Active Noise Cancellation
(deep ANC), Construction Site Noise Network (CsNNet), Multi-Channel Active Noise Cancellation (MCANC), and Generative fixed-
Filter Active Noise Control (GFANC), respectively.

Keywords: Active noise Cancellation; Multitude noise; Deep learning; Optimization

Veckratno aktivno-odpravijanje hrupa z uporabo
optimizirane mreze za globoko ucenje White Shark

Izvleéek: Aktivno odpravljanje hrupa (ANC) je bistvena lastnost avdio opreme, ki zmanjsuje nezelen hrup v ozadju. NeZeleni signali
v informacijskem signalu, imenovani hrup, lahko poslab3ajo mo¢ signalov v smislu razumljivosti in kakovosti. V zadnjem desetletju
so razli¢ni raziskovalci razvili razli¢ne algoritme za izboljsanje kakovosti govornega signala in zmanjsanje hrupa. Za resitev tega
problema je bila predlagano veckratno aktivno odpravljanje hrupa z uporabo optimizirane konvolucionalne nevronske mreze
White Shark — mreze z dolgim kratkoro¢nim spominom (MANC Net). Sprva se za izboljsanje kakovosti avdio signala z veckratnim
hrupom uporabi dvojna drevesna kompleksna valovna transformacija (DTCWT), znacilnosti signala pa se izlocijo z genetskim algo-
ritmom, ki temelji na zaznavanju skupnosti. Nato se na podlagi izvlecenega signala motnje zeleni signali razvrstijo z uporabo
hibridne konvolucionalne nevronske mreze - Long short-term memory (CNN-LSTM). Poleg tega se hiperparametri CNN-LSTM
prilagodijo z uporabo optimizacije White Shark (WSO) za vecjo natan¢nost. Ucinkovitost predlagane metode se oceni z uporabo
vrednosti parametrov natan¢nosti, specifi¢nosti, obcutljivosti, normalizirane srednje kvadratne napake (NMSE), kratkotrajne ob-
jektivne razumljivosti (STOI) in zaznavne ocene kakovosti govora (PESQ) v primerjavi z drugimi konvencionalnimi metodami. Vija
stopnja natan¢nosti in nizka NMSE pri razvr$¢anju avdio signalov sta dokazali ucinkovitost predlaganega modela MANC Net.
Splosna natan¢nost predlaganega modela je za 9,1 %, 8,7 %, 7,9 %, 3,4 % in 1,5 % boljsa od Filtered-X Least Mean Square (FXLMS),
deep Active Noise Cancellation (deep ANC), Construction Site Noise Network (CsNNet) Multi-Channel Active Noise Cancellation
(MCANC) in Generative fixed-Filter Active Noise Control (GFANC).

Klju¢ne besede: Aktivno odpravljanje hrupa; Vecvrstni hrup; Globoko uéenje; Optimizacija
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[ Introduction

In Active Noise Cancellation (ANC), two waveforms
with the same amplitude, but opposing phases, are su-
perimposed on each other to cancel out the noise [1].
This technique is based on the superposition of acous-
tic waves [2]. The active noise cancellation model uti-
lizes a microphone for sensing noise and then utilizes a
speaker for generating (anti-noise) complementary
waveforms incorporated with noise for canceling
through destructive interference [3]. Because of its
small size and ability to effectively reduce low frequen-
cies, ANC has become widely used in consumer audio
products, including headphones [4].

Digital Signal Processor Chips (DSP) were used by the
Digital ANC devices to suppress noise adaptively de-
spite changes in the surrounding environment [5]. For
noise reduction, the devices modify the finite impulse
response (FIR) filter coefficient. The Digital ANC was
categorized into feed-back and feedforward types [6].
The digital feed-forward ANC utilizes a single speaker
and two microphones (error) [7]. The range of ANC op-
eration frequency level is limited to approximately 600
Hertz. In feedback ANC, for maintaining loop stability
however it is 1500 Hertz in feed-forwards ANC in the
case of ear-phones [8-10]. Nevertheless, obtaining ref-
erence noise becomes challenging, if not impossible, if
the noise source is moving within the environment
[111.

Multitude noise refers to the aggregate or combined
noise generated from multiple sources, creating a com-
plex and often unpredictable auditory environment
[12]. Despite the advancements in ANC technology, ad-
dressing a multitude noise in broader environments re-
mains a complex challenge [13]. Traditional ANC sys-
tems are highly effective in controlled settings, like in-
side headphones, but their effectiveness diminishes in
open and variable environments. Future developments
in ANC technology aim to enhance its capability to
adapt to dynamic noise environments, potentially in-
corporating advanced algorithms, machine learning,
and improved sensor [14] technologies to better ana-
lyze and counteract a multitude noise in diverse set-
tings [15]. In this research, a novel Multitude Active
Noise cancellation using White Shark Optimized Con-
volutional neural network - Long short-term memory
Network (MANC Net) has been proposed. The major
contribution of the proposed method is

e The primary objective of the research is to de-
velop a Multitude active noise cancellation
model-based deep learning techniques to
classify the input signal.

e In the proposed method, Dual tree complex
Wavelet transform (DTCWT) is utilized to en-
hance the quality of audio signal with multi-
tude noise, and the signal features are ex-
tracted using a community detection based
Genetic Algorithm.

e Convolutional neural network - Long short-
term memory (CNN-LSTM) is introduced in the
proposed model to classify desired signals and
interference signals. Additionally, the hy-
perparameters of CNN-LSTM are tuned using
White Shark optimization for better accuracy.

e The efficiency of the MANC Net is evaluated
using accuracy, specificity, sensitivity, NMSE,
STOI, and PESQ parameter values in compari-
son with other conventional methods.

The section that follows outlines the paper's organiza-
tion. Section Il provides a summary existing ANC
model. Section lll provides a detailed list of all the intro-
duced algorithms, which form the basis of the pro-
posed system. The results of the implementation are
shown in Section IV. Section V concludes with an over-
all summary of the system.

2 Literature Survey

This section lists reviews of previous studies that exam-
ine various active noise-canceling techniques and their
various methodologies.

An approach for deep learning-based image pro-
cessing that uses random search was proposed by Hu-
ber, N.R., et al. in 2021 [16]. Compared to the low-dose
input picture, the CNN improved SSIM by 76%, reduced
RMSE by 34%, and reduced noise by 90% on six clinical
examinations that were set aside for testing. An algo-
rithm called Filtered-X Least Mean Square (FXLMS) was
proposed in 2022 by Bisht, A. and Patil, H.Y. [17] to ad-
dress noise produced by motor vehicles, particularly
those with combustion engines. To make things simple
and easy to use, their source noise signal is narrowband
combustion-related white noise that is generated at
random while running simulations.

A selective fixed-filter ANC approach based on a simpli-
fied two-dimensional Convolutional neural network
(2D CNN) was proposed by Shi, D., et al. in 2022 [18] to
determine the best control filter for various noise kinds.
The effectiveness of the suggested approach in reduc-
ing non-stationary noise in the actual world is demon-
strated by a numerical simulation that utilizes measur-
able routes in headphones, as opposed to traditional
adaptive algorithms. Zhang, H. and Wang, D. [19] sug-
gested a deep Active Noise Cancellation (deep ANC)
technique for active noise reduction in 2021. Methodi-
cal assessments employing STOI, NMSE, and PESQ
show that the deep ANC model for noise attenuation is
reliable and efficient.

To reduce signal noise, Arab, H., et al. (2022) designed
a Recurrent Neural Network (RNN) using an LSTM auto-
encoder architecture. Compared to current methods,
the accuracy of 99.93% in classifying the demodulation
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classes is comparatively greater. Cha, Y.J,, et al. (2023)
suggested DNoiseNet, a sophisticated DL-based feed-
back ANC that addresses acoustic delay and other pri-
mary and secondary path effects. Through comprehen-
sive parametric and comparative analyses, the sug-
gested approach produces optimal results in terms of
root mean square error and noise attenuation metrics.

Deep learning-based active noise cancelation named
Construction Site Noise Network (CsNNet) was created
in 2023 to reduce various noises found on construction
sites, as proposed by Mostafavi, A. and Cha, Y.J. [22].
Modern and conventional ANC algorithms were sur-
passed by the network that was exhibited. Zhang, H.
and Wang, D. (2023) suggested a deep learning-based
technique for Multi-Channel Active Noise Cancellation
(MCANCQ) [23]. According to experimental findings,
deep MCANC performs well in generalizing to un-
trained noises and is effective in reducing wideband
noise.

A Generative Fixed-filter Active Noise Control based -
Kalman technique was proposed by Luo, Z, et al. in
2023 [24]. The suggested method's effectiveness in
handling dynamic noises in the real world is confirmed
by numerical simulations. An approach for reducing
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noise, known as Generative Fixed-filter Active Noise
Control (GFANC), was proposed by Luo, Z,, etal.in 2023
[25]. This approach performs especially effectively
when the incoming noise differs noticeably from the
pre-training stimuli. The efficacy of the GFANC method
is shown by numerical simulations performed on real
recorded noises.

Based on the literature review, a number of deep learn-
ing techniques were proposed to improve speech un-
derstanding in noisy environments. However, issues
with ANC enhancement systems still include unreliable
voice inputs, high computation costs, and the presence
of background noise. To overcome these challenges a
novel a novel Multitude Active Noise cancellation using
White Shark Optimized CNN-LSTM Network (MANC
Net) has been proposed.

3 Proposed MANC Net

In this section, a novel Multitude Active Noise cancel-
lation using White Shark Optimized CNN-LSTM Net-
work (MANC Net) has been proposed. The overall block
of the proposed MANC Net is depicted in Figure 1.
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Figure 1: Overall block of proposed MANC Net

3.1 Dataset Description

In this research Audio benchmark dataset is utilized, it
comprises 8732 labeled sound excerpts (lesser than or
equal to 4s) of various urban sounds belonging to ten
classes like car_horn, gun_shot, children-playing, air-
conditioner, jackhammer, street music, siren, drilling,
engine_idling and dog-bark. The files were pre-sorted
to 10 folds like fold-1 to fold-10 aiding in features clas-
sification outcomes. Those 8732 audio files consisting
of urban sounds are represented in Waveform Audio
File Format (WAV format).

3.2 Noise Filtering via DTCWT

Audio signal exhibiting nonlinear characteristics that
pose challenges for conventional filter denoise re-
moval. Wavelet transform [26] is widely recognized for
its ability to analyze signals at multiple resolutions and
extract time-frequency features effectively, it has cer-
tain disadvantages, such as sensitivity to noise in some
applications, difficulty in selecting the optimal wavelet
basis for specific tasks, and higher computational com-
plexity [27]. Despite this limitation, the Dual tree com-
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plex Wavelet transform (DTCWT) [28] excellent perfor-
mance and qualitative qualities have made it known to
denoise these non-stationary signals.

Two genuine filter banks make up the DTCWT technol-
ogy (low pass and high pass filter pair). The real and
even component of a complex wavelet is provided by
the first Discrete Wavelet Transform (DWT) in this ap-
proach, while the real and odd or imaginary part is pro-
vided by the second DWT. Perfect Reconstruction (PR)
requirements are satisfied by each of the two sets of fil-
ters used in these two real DWTs. Equation (1) ex-
presses DTCWT as an approximate analytic wavelet.
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The values of 1, (t) are real and even, but the values of
Y, (t) are real and odd. The present study utilizes the
DTCWT technique to decompose the input audio sig-
nal into four levels of detail and approximation coeffi-
cients, as depicted in Figure 2.

In contrast to approximate coefficients, which are low-
frequency coefficients unaffected by noise, detail coef-
ficients are high-frequency coefficients that are typi-
cally influenced by noise. Finally, the audio signal is En-
hanced by reducing noise and preserving quality.

Figure 2: Four Levels of DTCWT technique

3.3 Feature extraction via community based Ge-
netic algorithm

The filtered signals are fed into the feature section
phase to extract the most relevant features using a
community based genetic algorithm [29]. The Commu-
nity Detection-based Genetic Algorithm for Feature Ex-
traction (CDGAFE) consists of the following primary
steps:

Step 1: Measure the relevance of features

The relevance of features was measured. To measure
the feature's discriminatory power, the discrimination
capability of the feature F;; are evaluated by employing
the Fisher score as below in the equation

Zﬁ‘il “ii(X}(i_xi)z
z:kl 1 n“(ck)z

score;; =

(2)

Wherein this C; denotes the number of dataset classes;
N;;denotes the sample count within the classification.
the variable x;indicates the mean of whole patterns in
accordance to feature Fj; , Xy, and oidenotes mean of
class and variance of class Kj;in correspondence with
the feature F;;

Larger Score;; value reveals that the feature Fj;consists
of high discriminative ability. In many instances, fea-
tures of the fisher score were near each other. In con-
quering this circumstance, the non-linear normaliza-
tion method referred as Soft,,.x scaling employed in
scaling edge weight into the range [0 1] represented by
the equation (3)

1
Scoreii—Scorel)
k

Score;; =

1+exp(—

i
3)

In this equation Score;; implies features Fj;fisher score
and oand Score, denotes the variance and mean of the
entire fisher-score and Score;; reveals normalized
fisher-score of features Fj;.

Step 2: Feature clustering

For applying a feature-clustering algorithm, the fea-
ture's similarity ought to be determined. As a graph-
based clustering method, feature space denotes to be
a graph. For this mapping of features to their equiva-
lent graph G = (F;, E;, Wy)are performed, wherein this
F; = {F;1, Fiz, --- .., Fin} represents the group of origi-
nal-features features E = {(Fy;, Fj;): F;iF;;eF;; were the
graph edges and similarity between feature F_ii and
F_jj is denoted by W_1i1j and they are connected by
an edge (Fi, F]-).The relationship among those features
F;; and Fj; are defined below equation
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Wi = 2pXii—Xii1) (X5 — Xjj)

ij
Tp(Xij—Xj1)? Zp(xji_xiil)z

(4)

Wherein this variableX;; and Xj;denotes the vectors of
those features Fj; and Fj;and Xjj; and X;;;implies mean
vectors X; and X;; values. Likewise, towards fisher
scores, entire similarity-values were normalized
through softmax-scaling.

Step 3: Initialization of Population

The set of chromosome populations has been initial-
ized randomly. The count of original features n, will be
equal to every length of chromosome. The total se-
lected features count in every chromosome should be
K * w such that k denotes cluster count and the user-
specified parameters are denoted by w that controls
the final feature subset size

Step 4: Calculation of Fitness values

Once the initial population is created, the fitness func-
tion score for entire features should be computed. For
this objective, the multi-fitness function was been in-
troduced. The fit of feature subset FS¥ within an itera-
tion (t) represented through J(FX(t)) and it is meas-
ured through equation (5)

CA(FSk(t;
J(FF @) = =510
Fop()+FE@O-1]

(5)

In this equation, the extraction accuracy of chosen fea-
tures-subset FSF(t)indicated by CAFS/(t) and the se-
lected features FSik (t) denotes the size of the subset.
The similarity among the features F;; and Fj; is stated
by variable FSF ().

Step 5: Perform phase Crossover operation and Mu-
tation operation

New chromosomes or features are generated through
cross-over operators and mutation operators. This
chromosome gene proceeds predefined mutation
probability, if or not to get selected for mutation.

Step 6: Performing Repair Operation

The repair process is used to recalculate the number of
features selected from each group among all features
developed. If the number of randomly chosen features
in a cluster is less than this w;, then a single feature is
chosen at random and the associated feature is
changed to a value of 1.

Step 7: Termination Criterion

In suppose a case if it has the count of iteration, that is
higher than the maximum allowable iteration counts, it
will continue or else another step is proceeded in the
calculation of fitness score values.

Step 8: Finalisation of Feature Subset Selection

Under the fitness values of the feature, the strongest
chromosome of the last hyperparameters, which had
higher stronger fisher score values, implies the opti-
mized selection of features subset, that paves the
higher accuracy and performance in denoise the noise
signals from features extracted signals.

3.4 CNN-LSTM based Classification

The CNN-LSTM receives the extracted features and
uses them to distinguish between the interference sig-
nal and the intended signal. To classify and denoise au-
dio signals, CNN and LSTM are integrated into the pro-
posed CNN-LSTM algorithm.

34.1. Convolutional Neural Network (CNN)

In addition to the input and output layers, the CNN [30]
architecture also includes several hidden layers. Several
convolution layers make up these hidden layers. Con-
volution Layers are composed of many kernels. The ac-
tivation function described by act(.), similarly pooling(.)
denoted by the pooling function, the local neighbor-
hood is represented by R;;. The down-sampling pro-
cess in the training phase in each layer’s feature maps
was computed as below.

yfi,j,k = pooling (act(Zfi‘j‘k))V(m, n) e R;;
(6)

The fully-connected layer might get placed after this
convolutional layer and then the pooling layer. In any
classification issues of features to categorize as desired
and interference signal, this can be handled through
the softmax function in the CNN model and is generally
employed in CNN output later (last layer). This loss
could also be retrieved by computation below,

L=YN_.1(6; y™,0™)ne [1...N] 7)

z|r

Wherein the n®input-data denoted by x™ and the real
target label of n™ input-data. Similarly, the nth output
of classification by CNN is denoted by o™ and 8 points
out all parameters. The pooling layer further generates
a lower dimension matrix as output after receiving the
value of the organized layer as input. Lastly, the signal
is classified by the fully connected layer using the pool-
ing layer's output.

34.2. LSTM

With the use of feedback connections, the LSTM [31]
layer can learn long-term dependencies. Three primary
gates input, output, and forget combined with a
memory cell to form an LSTM layer. By using this de-
sign, the long-term dependency maintenance mecha-
nism (LSTM) may determine which data to "remember"
and which to "forget."

fge = o(Wrglhse—1/pe] + usg (8)
iy = o(Wip[hse—1/pe ] + uip 9)
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EJC = tanh(Wep[hse—1/De | + Uen
(10)

cd, = ip, X cdy + g X cde_y
(11)

opy = J(M/:)p [Ase—1/Pe ] + Uop
(12)

hs; = op; X tanh(cd,;)
(13)

Hence, at time t, the states of the output gate, input
gate, and forget gate respectively, fg;, ip;, ops. Each

component has weight matrices denoted by
Wrgs Wip, Wen, Wop, and  bias vectors denoted by

Up g, Uips Ucp, Uop - cd, is the memory cell's candidate
state value at time t, as determined by the tanh func-
tion. s is the sigmoid function, and cd; is the memory
cell state at time t.

3.4.3.  Hybrid CNN-LSTM

The combination of CNN and LSTM for signal denoise
reduction in audio classification. Figure 3 shows the
proposed hybrid model for active noise cancellation in
categorization. The system consists of twenty layers:
one fully connected layer, one LSTM layer, five pooling
layers, twelve convolutional layers, and one output
layer that uses the softmax function. Beyond that, there
is a dropout layer with a 25% dropout rate. Features are
extracted using a convolutional layer with a 3x3 kernel
size, which is initiated by the RelLU function. The con-
volution section (none, 7, 7, 512) is followed in deter-
mining the final shape. The input size of the LSTM layer
has been lowered by the reshaping method (49, 251).
The structure classifies the spectrogram images into
desired and interference signal categories by first ana-
lyzing the temporal properties and then sorting the im-
ages through a completely linked layer. In Figure 3, the
CNN-LSTM architecture.

desired signal

o>

] Interference signal
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—>
>
_’_b
_’_b
> E
=
> —>
. —>
Input audio
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Max-pooling  Reshape || Flatten

connected

Figure 3: Architecture of CNN-LSTM

3.4.3.1. Hyper parameter turing via White shark
Optimization (WSO)

An intelligent metaheuristic model with practical appli-
cations, the White Shark Optimizer (WSO) [32] can solve
a wide range of optimization problems in a continuous
search domain. Importantly, the collective hunting
strategies, swimming capability, and highly developed
auditory and olfactory capabilities utilized in prey iden-
tification all have an impact on the WSO algorithm.
Equation (16) can be used to pinpoint the position of a
white shark:

[st s .. si]
s=|5 s st

lsz sy - s.l"J
(14)

The pt" spot of the white shark to the pt" dimension is
indicated by sg. The algorithm searches regions in the
q*" dimension can be computed as follows by utilizing
the upper ub, and lower lb, Limits:

sy = lb, + rand X (ubg — lby) (15)

where a random number within the range of [0, 1] is in-
dicated by rand. Here, the starting fitness values for

the first solutions given by Equation (16) can be calcu-
lated. Tiopr = U + My [Sgpest, — T ] X by +

my[s, X, —sP] x by)

In iterations k + 1 and k, the improved speed of the
p'" white sharks are represented by r’,, and ¥, ac-
cordingly. The white shark influences on sg,e, and

p
Tk

Spest are symbolized by m, and m,. While sy}, and
P

s;’gst provide the optimal global position at the K" it-

eration, s,f indicates the location of the p'* white

sharks in repetition k. White shark convergence behav-
ior is analyzed using the WSO constriction factor, i, and

P
the parameter s;’;st, which represents the i th best-de-
fined position of the swarm throughout the frequency
k iteration process.

s=[xXrand(1,x)]+1
(17)

where the random integers in the vector rand (1, x) are
between 0 and 1. Utilizing the following relationships,
the variables b; and b, provided in Equation (18) can
be computed:
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4k\2
by = byax + (bmax + bimin) X e_(f)
(18)

4k\?
by = bpin + (bmax + bmin) X e_(Y)
(19)

where the highest and lowest velocities of movement
for great white sharks are denoted by b, and b,;,,. A
1.5 and a 0.5 are assumed for b,,,;,, and b,;,, in this sit-
uation. Based on the following formula (22) the white
shark position is updated.
. st @t +ub-a+lb-a if rand < mv
Ser1 = sP + Sk if rand > mv
g

(20)

where 1, is a logical vector, ub and b are the upper and
lower limits of the search space, a and b represent for
binary vectors, g represents the white shark's wavy mo-
tion frequency, and — is the negation operator. One ap-
proaches the best shark in the following manner:

ka1 = Sgbest, T v H, X sgn(v, — 0.5)if vs < W, (23)
Start

Initialize WSO parameter

v

Generate initial population
randomly using eq (17)

Calculate the velocity of initial

population [ l

k=1 pp+l p—isn

l j

p=1 -

l k<K
Update the value of parameters

k=k+1

Optimal
Calculate the updated velocity solution
of p™white shark using cq (22} !
l Stop
rand < W,

Compute the distance of the p™
white shark and the prey

Update the movement of p™
white shark towards the best ——
one using eq (23)

Figure 4: Flow chart of White Shark Optimization

where v,, v,, V3 are random numbers between 0 and 1,
and sj,, represents the new location of the i th white
shark to the prey. Given that it returns either 1 or -1,
sgn(v, — 0.5) can be used to reverse the search's di-
rection. H, indicates how far away the prey is from the
white shark, while W, describes how strong the shark's
sight and smell senses are. The flowchart provided in
Figure 4 illustrates the shark optimizer's operating prin-
ciple.

4 Result and Discussion

The efficiency of the proposed MANC Net method is as-
sessed in its performance through comparative deep

learning-based ANC methods. To develop the pro-
posed framework's performance evaluation by com-
paring its parameter values for accuracy, specificity,
sensitivity, NMSE, STOI, and PESQ to those of other tra-
ditional techniques.

Figure 5 represents the input signals and the outcomes
of the resultant denoised signals after the active noise
cancellation process. The input signals comprising dif-
ferent intensities of waveforms are subjected to the
proposed active noise cancellation process using hy-
brid CNN-LSTM, the outcomes of classified outcomes
yield precise text voice signals with no interference of
noise signals in the outcome end.

0 10000 20000 30000 40000 50000 0 20000 40000 60000 80000

Amplitude Amplitude

(a) (b)
(©
Figure 5: (a) Input signal (b) Interference signal (c) De-
sired Signal

4.1 Performance metric

The results enumerated the performance assessment
of the proposed method in terms of accuracy, specific-
ity, sensitivity, NMSE, STOI, and PESQ with other noise
cancelation systems.

Loss

— Training
— Testing

[ 5 0 15 20 B
Epochs

(@) (b)

Figure 6: Training and testing of proposed method (a)
Accuracy (b) Loss

Short-Time Objective Intelligibility (STOI): The cor-
relation coefficient between the temporal envelopes of
time-aligned reference signals and processed signals
inside shorter time overlapping segments served as the
basis for the STOI metric.
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Perceptual Evaluation of Speech Quality (PESQ):
The PESQ metric refers to a set of standards that in-
clude test methods for automatically evaluating
speech quality based on connections made through a
calling system's user experience.

Normalized Mean Squared Error (NMSE): The MSE
measure that has been normalized by signal power is
called the NMSE. In the ANC model, the error-signal
power was typically employed as a quality parameter
for noise attenuation.

Figure 6 (a) explicates the accuracy of the training set
and the validation set if the classified outcomes are
brought out perfectly. The accuracy of the training re-
sults in denoise of audio signals produced the classifi-
cation outcomes at a higher rate of accuracy. Figure 6
(b) presents the loss of signals while performing the
ANC process. The loss attained in the training phase
seems to be lower in comparison to the validation loss.

Table 1: PESQ estimation for different noise

Car 4.1578 4.1001 4.1481 4.1785

Children 4.1485 4.1675 4.0458 4.2475
playing
Drilling 41078 4.1369 41785 4,2785

Street 4.2745 4.1284 4.2758 4.2775

music
Dog bark | 4.1201 41234 | 42785 42845
Table 1 shows the PESQ scores for different noise types
at various input PESQ levels: 0 dB, 5 dB, 10 dB, and 15
dB. At 10 dB, dog barking sound (4.2785) and Street
noise (4.2758) lead to performance. At 15 dB, dog bark-
ing noise achieves the highest PESQ score (4. 2845), fol-
lowed by drilling noise (4. 2785). Overall, the proposed
method performs best under Street noise at 0 dB, and
dog barking noise at 15 dB.

4.2 Comparative analysis

The effectiveness of the proposed MANC Net approach
was assessed in comparison to that of other ap-
proaches to demonstrate its accuracy and efficiency.
The proposed MANC Net approach is compared with
the current techniques, including Custom FxLMS [17],
deep ANC [19], CsNNet [22], MCANC [23], and GFANC
[25].

Table 2: Performance of Proposed ANC model

Table 2 depicts the numerical values of STOI, PESQ, and
NMSE metrics values of existing Custom FxLMS [17],
deep ANC [19], CsNNet [22], MCANC [23], and GFANC
[25] methods and it compares with proposed MANC
Net method. The proposed method possesses a higher
PESQ value, (2.35) and a higher STOI value (0.92) reveal-
ing the higher performance in denoise behavior. The
least values of NMSE (-12) values are gained for pro-
posed active noise cancellation techniques.

Table 3: Comparative analysis of proposed model clas-
sifier for different datasets

ESC-10 | 70.15 7215 | 78.31 82.15 | 91.32

ESC-50 | 72.36 61.54 | 60.1 8545 [ 9235

UrbS8K | 79.08 83.7 86.15 89.45 | 98.56

Table 3 represents the noise cancellation outcomes
from input signals of the proposed Hybrid CNN-LSTM
classification approach in terms of accuracy. The out-
comes in denoising of input signals, from different da-
tasets such as ESC-10, ESC-50, and UrbanSound8K da-
taset. For the UrbanSound8K dataset, different classifi-
ers yield higher accuracy in classification for the Opti-
mized CNN-LSTM classifier (98.56%).

mAccuracy W Sensitivity m Specificity

88

: I ' I ' I '
o I ' I

8 I .

FXIMS  deep ANC  CsNNet MCANC GFANC Proposed
Methods

Performance (%)
©
3

Figure 7: Performance analysis of proposed with exist-
ing methods

Figure 7 shows the comparative analysis performed in
assessing the classification accuracy of the proposed
MANC Net model with other FxLMS [17], deep ANC
[19], CsNNet [22], MCANC [23], and GFANC [25]. From
the figure, it explicates that the proposed noise cancel-
lation method, shows higher training accuracy
(98.56%), higher specificity (95.12%), and high sensitiv-
ity (99.32%) than other existing ANC methods. The
overall accuracy of the proposed is 9.1%, 8.7%, 7.9%,
3.4%, and 1.5% better than FXLMS, deep ANC, CsNNet,
MCANC, and GFANC respectively.

5 Conclusion

Unprocessed 0 0.79 1.95
Custom FxLMS [17] -4.54 0.71 1.84
deep ANC [19] -6.55 0.69 1.73
CsNNet [22] -10.6 0.72 1.71
MCANC [23] -10 0.84 2.26
GFANC [25] -11 0.88 2.30
Proposed -12 0.92 2.35

In this research, Multitude Active Noise cancellation us-
ing White Shark Optimized CNN-LSTM Network (MANC
Net) has been proposed. Initially, Dual tree complex
Wavelet transform is utilized to enhance the quality of
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audio signal with multitude noise and the signal fea-
tures are extracted using community detection based
Genetic Algorithm. Afterwards based on extracted sig-
nal, interference and desired signals are classified using
hybridized Convolutional neural network - Long short-
term memory (CNN-LSTM). Additionally, the hyper pa-
rameters of CNN-LSTM are tuned using White Shark op-
timization for better accuracy. The efficiency of the pro-
posed method is evaluated using accuracy, specificity,
sensitivity, NMSE, STOl and PESQ. The proposed
method possesses higher PESQ value, (2.35) and higher
STOl value (0.92) reveals the higher performance in de-
noise behaviour. The overall accuracy of the proposed
is 9.1%, 8.7%, 7.9%, 3.4%, and 1.5% better than FxLMS,
deep ANC, CsNNet, MCANC, and GFANC respectively.
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