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Abstract: Active noise cancellation (ANC) is an essential feature of audio equipment that reduces unwanted background noise. 
Unwanted signals in information bearing-signal referred to as noise, could degrade the strength of signals in terms of intelligibility 
and quality. Over the decade, various researchers developed different algorithms to enhance speech signal quality and for noise 
reduction. To address the issue, a Multitude Active Noise cancellation using White Shark Optimized Convolutional neural network 
- Long short-term memory Network (MANC Net) has been proposed.  Initially, Dual Tree Complex Wavelet Transform (DTCWT) is 
utilized to enhance the quality of audio signal with a multitude noise and the signal features are extracted using a community 
detection based Genetic Algorithm. Afterward based on extracted signal, interference and desired signals are classified using Hy-
brid Convolutional neural network - Long short-term memory (CNN-LSTM). Additionally, the hyperparameters of CNN-LSTM are 
tuned using White Shark Optimization (WSO) for better accuracy. The efficiency of the proposed method is evaluated using accu-
racy, specificity, sensitivity, Normalized Mean Squared Error (NMSE), Short-Time Objective Intelligibility (STOI), and Perceptual Eval-
uation of Speech Quality (PESQ) parameter values in comparison with other conventional methods. The higher accuracy rate and 
low NMSE in the classification of audio signals evidenced the efficacy of the proposed MANC Net model. The overall accuracy of 
the proposed is 9.1%, 8.7%, 7.9%, 3.4%, and 1.5% better than Filtered-X Least Mean Square (FxLMS), deep Active Noise Cancellation 
(deep ANC), Construction Site Noise Network (CsNNet), Multi-Channel Active Noise Cancellation (MCANC), and Generative fixed-
Filter Active Noise Control (GFANC), respectively. 

Keywords: Active noise Cancellation; Multitude noise; Deep learning; Optimization 

 

Večkratno aktivno odpravljanje hrupa z uporabo 
optimizirane mreže za globoko učenje White Shark 
Izvleček: Aktivno odpravljanje hrupa (ANC) je bistvena lastnost avdio opreme, ki zmanjšuje neželen hrup v ozadju. Neželeni signali 
v informacijskem signalu, imenovani hrup, lahko poslabšajo moč signalov v smislu razumljivosti in kakovosti. V zadnjem desetletju 
so različni raziskovalci razvili različne algoritme za izboljšanje kakovosti govornega signala in zmanjšanje hrupa. Za rešitev tega 
problema je bila predlagano večkratno aktivno odpravljanje hrupa z uporabo optimizirane konvolucionalne nevronske mreže 
White Shark – mreže z dolgim kratkoročnim spominom (MANC Net).  Sprva se za izboljšanje kakovosti avdio signala z večkratnim 
hrupom uporabi dvojna drevesna kompleksna valovna transformacija (DTCWT), značilnosti signala pa se izločijo z genetskim algo-
ritmom, ki temelji na zaznavanju skupnosti. Nato se na podlagi izvlečenega signala motnje želeni signali razvrstijo z uporabo 
hibridne konvolucionalne nevronske mreže – Long short-term memory (CNN-LSTM). Poleg tega se hiperparametri CNN-LSTM 
prilagodijo z uporabo optimizacije White Shark (WSO) za večjo natančnost. Učinkovitost predlagane metode se oceni z uporabo 
vrednosti parametrov natančnosti, specifičnosti, občutljivosti, normalizirane srednje kvadratne napake (NMSE), kratkotrajne ob-
jektivne razumljivosti (STOI) in zaznavne ocene kakovosti govora (PESQ) v primerjavi z drugimi konvencionalnimi metodami. Višja 
stopnja natančnosti in nizka NMSE pri razvrščanju avdio signalov sta dokazali učinkovitost predlaganega modela MANC Net. 
Splošna natančnost predlaganega modela je za 9,1 %, 8,7 %, 7,9 %, 3,4 % in 1,5 % boljša od Filtered-X Least Mean Square (FxLMS), 
deep Active Noise Cancellation (deep ANC), Construction Site Noise Network (CsNNet) Multi-Channel Active Noise Cancellation 
(MCANC) in Generative fixed-Filter Active Noise Control (GFANC). 

Ključne besede: Aktivno odpravljanje hrupa; Večvrstni hrup; Globoko učenje; Optimizacija 
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1 Introduction
In Active Noise Cancellation (ANC), two waveforms 
with the same amplitude, but opposing phases, are su-
perimposed on each other to cancel out the noise [1]. 
This technique is based on the superposition of acous-
tic waves [2]. The active noise cancellation model uti-
lizes a microphone for sensing noise and then utilizes a 
speaker for generating (anti-noise) complementary 
waveforms incorporated with noise for canceling 
through destructive interference [3]. Because of its 
small size and ability to effectively reduce low frequen-
cies, ANC has become widely used in consumer audio 
products, including headphones [4].  

Digital Signal Processor Chips (DSP) were used by the 
Digital ANC devices to suppress noise adaptively de-
spite changes in the surrounding environment [5]. For 
noise reduction, the devices modify the finite impulse 
response (FIR) filter coefficient. The Digital ANC was 
categorized into feed-back and feedforward types [6]. 
The digital feed-forward ANC utilizes a single speaker 
and two microphones (error) [7]. The range of ANC op-
eration frequency level is limited to approximately 600 
Hertz. In feedback ANC, for maintaining loop stability 
however it is 1500 Hertz in feed-forwards ANC in the 
case of ear-phones [8-10]. Nevertheless, obtaining ref-
erence noise becomes challenging, if not impossible, if 
the noise source is moving within the environment 
[11]. 

Multitude noise refers to the aggregate or combined 
noise generated from multiple sources, creating a com-
plex and often unpredictable auditory environment 
[12]. Despite the advancements in ANC technology, ad-
dressing a multitude noise in broader environments re-
mains a complex challenge [13]. Traditional ANC sys-
tems are highly effective in controlled settings, like in-
side headphones, but their effectiveness diminishes in 
open and variable environments. Future developments 
in ANC technology aim to enhance its capability to 
adapt to dynamic noise environments, potentially in-
corporating advanced algorithms, machine learning, 
and improved sensor [14] technologies to better ana-
lyze and counteract a multitude noise in diverse set-
tings [15]. In this research, a novel Multitude Active 
Noise cancellation using White Shark Optimized Con-
volutional neural network - Long short-term memory 
Network (MANC Net) has been proposed.  The major 
contribution of the proposed method is 

• The primary objective of the research is to de-
velop a Multitude active noise cancellation 
model-based deep learning techniques to 
classify the input signal. 

• In the proposed method, Dual tree complex 
Wavelet transform (DTCWT) is utilized to en-
hance the quality of audio signal with multi-
tude noise, and the signal features are ex-
tracted using a community detection based 
Genetic Algorithm.  

• Convolutional neural network - Long short-
term memory (CNN-LSTM) is introduced in the 
proposed model to classify desired signals and 
interference signals. Additionally, the hy-
perparameters of CNN-LSTM are tuned using 
White Shark optimization for better accuracy. 

• The efficiency of the MANC Net is evaluated 
using accuracy, specificity, sensitivity, NMSE, 
STOI, and PESQ parameter values in compari-
son with other conventional methods. 

The section that follows outlines the paper's organiza-
tion. Section II provides a summary existing ANC 
model. Section III provides a detailed list of all the intro-
duced algorithms, which form the basis of the pro-
posed system. The results of the implementation are 
shown in Section IV. Section V concludes with an over-
all summary of the system. 

2 Literature Survey 
This section lists reviews of previous studies that exam-
ine various active noise-canceling techniques and their 
various methodologies. 

An approach for deep learning-based image pro-
cessing that uses random search was proposed by Hu-
ber, N.R., et al. in 2021 [16]. Compared to the low-dose 
input picture, the CNN improved SSIM by 76%, reduced 
RMSE by 34%, and reduced noise by 90% on six clinical 
examinations that were set aside for testing. An algo-
rithm called Filtered-X Least Mean Square (FxLMS) was 
proposed in 2022 by Bisht, A. and Patil, H.Y. [17] to ad-
dress noise produced by motor vehicles, particularly 
those with combustion engines. To make things simple 
and easy to use, their source noise signal is narrowband 
combustion-related white noise that is generated at 
random while running simulations. 

A selective fixed-filter ANC approach based on a simpli-
fied two-dimensional Convolutional neural network 
(2D CNN) was proposed by Shi, D., et al. in 2022 [18] to 
determine the best control filter for various noise kinds. 
The effectiveness of the suggested approach in reduc-
ing non-stationary noise in the actual world is demon-
strated by a numerical simulation that utilizes measur-
able routes in headphones, as opposed to traditional 
adaptive algorithms. Zhang, H. and Wang, D. [19] sug-
gested a deep Active Noise Cancellation (deep ANC) 
technique for active noise reduction in 2021. Methodi-
cal assessments employing STOI, NMSE, and PESQ 
show that the deep ANC model for noise attenuation is 
reliable and efficient. 

To reduce signal noise, Arab, H., et al. (2022) designed 
a Recurrent Neural Network (RNN) using an LSTM auto-
encoder architecture. Compared to current methods, 
the accuracy of 99.93% in classifying the demodulation 
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classes is comparatively greater. Cha, Y.J., et al. (2023) 
suggested DNoiseNet, a sophisticated DL-based feed-
back ANC that addresses acoustic delay and other pri-
mary and secondary path effects. Through comprehen-
sive parametric and comparative analyses, the sug-
gested approach produces optimal results in terms of 
root mean square error and noise attenuation metrics. 

Deep learning-based active noise cancelation named 
Construction Site Noise Network (CsNNet) was created 
in 2023 to reduce various noises found on construction 
sites, as proposed by Mostafavi, A. and Cha, Y.J. [22]. 
Modern and conventional ANC algorithms were sur-
passed by the network that was exhibited. Zhang, H. 
and Wang, D. (2023) suggested a deep learning-based 
technique for Multi-Channel Active Noise Cancellation 
(MCANC) [23]. According to experimental findings, 
deep MCANC performs well in generalizing to un-
trained noises and is effective in reducing wideband 
noise. 

A Generative Fixed-filter Active Noise Control based -
Kalman technique was proposed by Luo, Z., et al. in 
2023 [24]. The suggested method's effectiveness in 
handling dynamic noises in the real world is confirmed 
by numerical simulations. An approach for reducing 

noise, known as Generative Fixed-filter Active Noise 
Control (GFANC), was proposed by Luo, Z., et al. in 2023 
[25]. This approach performs especially effectively 
when the incoming noise differs noticeably from the 
pre-training stimuli. The efficacy of the GFANC method 
is shown by numerical simulations performed on real 
recorded noises. 

Based on the literature review, a number of deep learn-
ing techniques were proposed to improve speech un-
derstanding in noisy environments. However, issues 
with ANC enhancement systems still include unreliable 
voice inputs, high computation costs, and the presence 
of background noise. To overcome these challenges a 
novel a novel Multitude Active Noise cancellation using 
White Shark Optimized CNN-LSTM Network (MANC 
Net) has been proposed.   

3 Proposed MANC Net 
 In this section, a novel Multitude Active Noise cancel-
lation using White Shark Optimized CNN-LSTM Net-
work (MANC Net) has been proposed. The overall block 
of the proposed MANC Net is depicted in Figure 1. 

 

Figure 1: Overall block of proposed MANC Net 

3.1 Dataset Description 

In this research Audio benchmark dataset is utilized, it 
comprises 8732 labeled sound excerpts (lesser than or 
equal to 4s) of various urban sounds belonging to ten 
classes like car_horn, gun_shot, children-playing, air-
conditioner, jackhammer, street music, siren, drilling, 
engine_idling and dog-bark. The files were pre-sorted 
to 10 folds like fold-1 to fold-10 aiding in features clas-
sification outcomes. Those 8732 audio files consisting 
of urban sounds are represented in Waveform Audio 
File Format (WAV format).  

3.2 Noise Filtering via DTCWT 

Audio signal exhibiting nonlinear characteristics that 
pose challenges for conventional filter denoise re-
moval. Wavelet transform [26] is widely recognized for 
its ability to analyze signals at multiple resolutions and 
extract time-frequency features effectively, it has cer-
tain disadvantages, such as sensitivity to noise in some 
applications, difficulty in selecting the optimal wavelet 
basis for specific tasks, and higher computational com-
plexity [27]. Despite this limitation, the Dual tree com-
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plex Wavelet transform (DTCWT) [28] excellent perfor-
mance and qualitative qualities have made it known to 
denoise these non-stationary signals. 

Two genuine filter banks make up the DTCWT technol-
ogy (low pass and high pass filter pair). The real and 
even component of a complex wavelet is provided by 
the first Discrete Wavelet Transform (DWT) in this ap-
proach, while the real and odd or imaginary part is pro-
vided by the second DWT. Perfect Reconstruction (PR) 
requirements are satisfied by each of the two sets of fil-
ters used in these two real DWTs. Equation (1) ex-
presses DTCWT as an approximate analytic wavelet. 

𝜓𝜓(𝑡𝑡) = 𝜓𝜓𝑞𝑞(𝑡𝑡) + 𝑥𝑥𝜓𝜓𝑣𝑣(𝑡𝑡)                                                                       
(1)                                         

The values of 𝜓𝜓𝑞𝑞(𝑡𝑡) are real and even, but the values of 
𝜓𝜓𝑣𝑣(𝑡𝑡) are real and odd. The present study utilizes the 
DTCWT technique to decompose the input audio sig-
nal into four levels of detail and approximation coeffi-
cients, as depicted in Figure 2.  

In contrast to approximate coefficients, which are low-
frequency coefficients unaffected by noise, detail coef-
ficients are high-frequency coefficients that are typi-
cally influenced by noise. Finally, the audio signal is En-
hanced by reducing noise and preserving quality. 

 

Figure 2: Four Levels of DTCWT technique 

3.3 Feature extraction via community based Ge-
netic algorithm 

The filtered signals are fed into the feature section 
phase to extract the most relevant features using a 
community based genetic algorithm [29].  The Commu-
nity Detection-based Genetic Algorithm for Feature Ex-
traction (CDGAFE) consists of the following primary 
steps: 

Step 1: Measure the relevance of features 

The relevance of features was measured. To measure 
the feature's discriminatory power, the discrimination 
capability of the feature Fii are evaluated by employing 
the Fisher score as below in the equation  

scoreii =
∑ nii�xii

k−xi�
2C_i

k=1 

∑ nii�σi
k�

2ci
k=1 

                                                      

(2) 

Wherein this Ci denotes the number of dataset classes; 
N1idenotes the sample count within the classification. 
the variable xiindicates the mean of whole patterns in 
accordance to feature Fii , Xki and σkdenotes mean of 
class and variance of class Kiiin correspondence with 
the feature Fii 

Larger Scoreii value reveals that the feature Fiiconsists 
of high discriminative ability. In many instances, fea-
tures of the fisher score were near each other. In con-
quering this circumstance, the non-linear normaliza-
tion method referred as Softmax  scaling employed in 
scaling edge weight into the range [0 1] represented by 
the equation (3) 

Scoreii = 1

1+exp (−
Scoreii−Score1

σi
k )

  

 (3) 

In this equation Scoreii implies features Fiifisher score 
and σ and Score1 denotes the variance and mean of the 
entire fisher-score and Scoreii reveals normalized 
fisher-score of features Fii. 

Step 2: Feature clustering 

For applying a feature-clustering algorithm, the fea-
ture's similarity ought to be determined.  As a graph-
based clustering method, feature space denotes to be 
a graph. For this mapping of features to their equiva-
lent graph G = (Fi, Ei, Wf)are performed, wherein this 
Fi = {Fi1, Fi2, … … . . , Fin} represents the group of origi-
nal-features features E = {�Fii, Fjj�: FiiFjjεFii  were the 
graph edges and similarity between feature F_ii  and 
F_jj    is  denoted by W_1i1j and they are connected by 
an edge �Fi, Fj�. The relationship among those features 
Fii and Fjj are defined below equation  
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Wij =
∑ (Xii−Xii1)(Xjj−Xjj)p

�∑ (Xii−Xi1)2p �∑ �Xjj−Xij1�
2

p

                                    

(4) 

Wherein this variableXii and Xjjdenotes the vectors of 
those features Fii and Fjjand Xii1 and Xii1implies mean 
vectors Xii and Xjj values.  Likewise, towards fisher 
scores, entire similarity-values were normalized 
through softmax-scaling.  

Step 3: Initialization of Population 

The set of chromosome populations has been initial-
ized randomly. The count of original features n, will be 
equal to every length of chromosome. The total se-
lected features count in every chromosome should be 
K ∗ ω such that 𝑘𝑘 denotes cluster count and the user-
specified parameters are denoted by ω that controls 
the final feature subset size 

Step 4: Calculation of Fitness values 

 Once the initial population is created, the fitness func-
tion score for entire features should be computed. For 
this objective, the multi-fitness function was been in-
troduced. The fit of feature subset 𝐹𝐹𝑆𝑆𝑖𝑖𝑘𝑘 within an itera-
tion (t) represented through 𝐽𝐽�𝐹𝐹𝑠𝑠𝑘𝑘(𝑡𝑡)� and it is meas-
ured through equation (5) 

𝐽𝐽�𝐹𝐹𝑠𝑠𝑘𝑘(𝑡𝑡)� = 𝐶𝐶𝐴𝐴(𝐹𝐹𝑆𝑆𝑘𝑘(𝑡𝑡𝑖𝑖)
2

𝐹𝐹𝑠𝑠𝑠𝑠(𝑡𝑡)∗𝐹𝐹𝑠𝑠
𝑘𝑘(𝑡𝑡)−1 |

                                                      

(5) 

In this equation, the extraction accuracy of chosen fea-
tures-subset 𝐹𝐹𝑆𝑆𝑖𝑖𝑘𝑘(𝑡𝑡)indicated by CA𝐹𝐹𝑆𝑆𝑖𝑖𝑘𝑘(𝑡𝑡) and the se-
lected features 𝐹𝐹𝑆𝑆𝑖𝑖𝑘𝑘 (t) denotes the size of the subset. 
The similarity among the features 𝐹𝐹𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑗𝑗𝑗𝑗  is stated 
by variable 𝐹𝐹𝑆𝑆𝑖𝑖𝑘𝑘 (t).   

Step 5: Perform phase Crossover operation and Mu-
tation operation  

 New chromosomes or features are generated through 
cross-over operators and mutation operators. This 
chromosome gene proceeds predefined mutation 
probability, if or not to get selected for mutation. 

Step 6: Performing Repair Operation 

The repair process is used to recalculate the number of 
features selected from each group among all features 
developed. If the number of randomly chosen features 
in a cluster is less than this 𝜔𝜔𝑖𝑖 , then a single feature is 
chosen at random and the associated feature is 
changed to a value of 1.  

Step 7: Termination Criterion 

In suppose a case if it has the count of iteration, that is 
higher than the maximum allowable iteration counts, it 
will continue or else another step is proceeded in the 
calculation of fitness score values. 

Step 8: Finalisation of Feature Subset Selection 

Under the fitness values of the feature, the strongest 
chromosome of the last hyperparameters, which had 
higher stronger fisher score values, implies the opti-
mized selection of features subset, that paves the 
higher accuracy and performance in denoise the noise 
signals from features extracted signals. 

3.4 CNN-LSTM based Classification 

The CNN-LSTM receives the extracted features and 
uses them to distinguish between the interference sig-
nal and the intended signal. To classify and denoise au-
dio signals, CNN and LSTM are integrated into the pro-
posed CNN-LSTM algorithm.  

34.1. Convolutional Neural Network (CNN) 

In addition to the input and output layers, the CNN [30] 
architecture also includes several hidden layers. Several 
convolution layers make up these hidden layers. Con-
volution Layers are composed of many kernels. The ac-
tivation function described by act(.), similarly pooling(.) 
denoted by the pooling function, the local neighbor-
hood is represented by  Ri,j. The down-sampling pro-
cess in the training phase in each layer’s feature maps 
was computed as below. 

yfi,j,k = pooling (act�Zfi,j,k�)∀(m, n) ϵ  Ri,j                   
(6) 

The fully-connected layer might get placed after this 
convolutional layer and then the pooling layer. In any 
classification issues of features to categorize as desired 
and interference signal, this can be handled through 
the softmax function in the CNN model and is generally 
employed in CNN output later (last layer).  This loss 
could also be retrieved by computation below, 

𝐿𝐿 = ∑ l (θ;  y(n) , o(n)) n ϵ  [1 … . N] 1
N

N
n=1                  (7)  

Wherein the nthinput-data denoted by x(n) and the real 
target label of nth input-data. Similarly, the nth output 
of classification by CNN is denoted by o(n) and θ  points 
out all parameters. The pooling layer further generates 
a lower dimension matrix as output after receiving the 
value of the organized layer as input. Lastly, the signal 
is classified by the fully connected layer using the pool-
ing layer's output. 

34.2. LSTM 

With the use of feedback connections, the LSTM [31] 
layer can learn long-term dependencies. Three primary 
gates input, output, and forget combined with a 
memory cell to form an LSTM layer. By using this de-
sign, the long-term dependency maintenance mecha-
nism (LSTM) may determine which data to "remember" 
and which to "forget."  

𝑓𝑓𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑓𝑓[ℎ𝑠𝑠𝑡𝑡−1 𝑝𝑝𝑡𝑡 ] + 𝑢𝑢𝑓𝑓𝑓𝑓⁄                  (8) 

𝑖𝑖𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑖𝑖[ℎ𝑠𝑠𝑡𝑡−1 𝑝𝑝𝑡𝑡 ] + 𝑢𝑢𝑖𝑖𝑖𝑖⁄                  (9) 
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𝑐𝑐𝑐𝑐𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐ℎ[ℎ𝑠𝑠𝑡𝑡−1 𝑝𝑝𝑡𝑡 ] + 𝑢𝑢𝑐𝑐ℎ⁄                  
(10) 

𝑐𝑐𝑐𝑐𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑡𝑡 × 𝑐𝑐𝑐𝑐𝑡𝑡� + 𝑓𝑓𝑓𝑓𝑡𝑡 × 𝑐𝑐𝑐𝑐𝑡𝑡−1                 
(11) 

𝑜𝑜𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑜𝑜[ℎ𝑠𝑠𝑡𝑡−1 𝑝𝑝𝑡𝑡 ] + 𝑢𝑢𝑜𝑜𝑜𝑜⁄                  
(12) 

ℎ𝑠𝑠𝑡𝑡 = 𝑜𝑜𝑜𝑜𝑡𝑡 × tanh(𝑐𝑐𝑐𝑐𝑡𝑡)                  
(13) 

Hence, at time t, the states of the output gate, input 
gate, and forget gate respectively, 𝑓𝑓𝑓𝑓𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑜𝑜𝑜𝑜𝑡𝑡 . Each 
component has weight matrices denoted by 
𝑊𝑊𝑓𝑓𝑓𝑓,𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑐𝑐ℎ,𝑊𝑊𝑜𝑜𝑜𝑜 , and bias vectors denoted by 
𝑢𝑢𝑓𝑓𝑓𝑓,𝑢𝑢𝑖𝑖𝑝𝑝,𝑢𝑢𝑐𝑐ℎ ,𝑢𝑢𝑜𝑜𝑜𝑜   . 𝑐𝑐𝑐𝑐𝑡𝑡�   is the memory cell's candidate 
state value at time t, as determined by the tanh func-
tion. 𝑠𝑠 is the sigmoid function, and 𝑐𝑐𝑐𝑐𝑡𝑡  is the memory 
cell state at time 𝑡𝑡. 

3.4.3. Hybrid CNN-LSTM 

The combination of CNN and LSTM for signal denoise 
reduction in audio classification. Figure 3 shows the 
proposed hybrid model for active noise cancellation in 
categorization. The system consists of twenty layers: 
one fully connected layer, one LSTM layer, five pooling 
layers, twelve convolutional layers, and one output 
layer that uses the softmax function. Beyond that, there 
is a dropout layer with a 25% dropout rate. Features are 
extracted using a convolutional layer with a 3×3 kernel 
size, which is initiated by the ReLU function. The con-
volution section (none, 7, 7, 512) is followed in deter-
mining the final shape. The input size of the LSTM layer 
has been lowered by the reshaping method (49, 251). 
The structure classifies the spectrogram images into 
desired and interference signal categories by first ana-
lyzing the temporal properties and then sorting the im-
ages through a completely linked layer. In Figure 3, the 
CNN-LSTM architecture. 

 

Figure 3: Architecture of CNN-LSTM 

3.4.3.1. Hyper parameter turing via White shark 
Optimization (WSO) 

An intelligent metaheuristic model with practical appli-
cations, the White Shark Optimizer (WSO) [32] can solve 
a wide range of optimization problems in a continuous 
search domain. Importantly, the collective hunting 
strategies, swimming capability, and highly developed 
auditory and olfactory capabilities utilized in prey iden-
tification all have an impact on the WSO algorithm. 
Equation (16) can be used to pinpoint the position of a 
white shark: 

𝑠𝑠 =

⎣
⎢
⎢
⎡𝑠𝑠1
1

𝑠𝑠12
:
𝑠𝑠1𝑥𝑥

𝑠𝑠21

𝑠𝑠22
:
𝑠𝑠2𝑥𝑥

…
…
:

…

𝑠𝑠𝑙𝑙1

𝑠𝑠𝑙𝑙2
:
𝑠𝑠𝑙𝑙𝑥𝑥⎦
⎥
⎥
⎤
                  

(14) 

The 𝑝𝑝𝑡𝑡ℎ spot of the white shark to the 𝑝𝑝𝑡𝑡ℎ dimension is 
indicated by 𝑠𝑠𝑞𝑞

𝑝𝑝. The algorithm searches regions in the 
𝑞𝑞𝑡𝑡ℎ dimension can be computed as follows by utilizing 
the upper 𝑢𝑢𝑢𝑢𝑞𝑞 and lower 𝑙𝑙𝑙𝑙𝑞𝑞  Limits: 

𝑠𝑠𝑞𝑞
𝑝𝑝 = 𝑙𝑙𝑙𝑙𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑢𝑢𝑢𝑢𝑞𝑞 − 𝑙𝑙𝑙𝑙𝑞𝑞)                (15) 

where a random number within the range of [0, 1] is in-
dicated by 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. Here, the starting fitness values for 

the first solutions given by Equation (16) can be calcu-
lated. 𝑟𝑟𝑘𝑘+1

𝑝𝑝 = 𝜇𝜇(𝑟𝑟𝑘𝑘
𝑝𝑝 + 𝑚𝑚1[𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 − 𝑟𝑟𝑘𝑘

𝑝𝑝] × 𝑏𝑏1 +

𝑚𝑚1[𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑟𝑟𝑘𝑘
𝑝𝑝

− 𝑠𝑠𝑘𝑘
𝑝𝑝] × 𝑏𝑏2)                                    

(16)                                                      

In iterations 𝑘𝑘 +  1 and k, the improved speed of the 
𝑝𝑝𝑡𝑡ℎ white sharks are represented by 𝑟𝑟𝑘𝑘+1

𝑝𝑝  and 𝑟𝑟𝑘𝑘
𝑝𝑝 , ac-

cordingly. The white shark influences on 𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘  and 

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑟𝑟𝑘𝑘
𝑝𝑝

 are symbolized by 𝑚𝑚1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚2. While 𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘  and 

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑟𝑟𝑘𝑘
𝑝𝑝

 provide the optimal global position at the 𝐾𝐾𝑡𝑡ℎ it-
eration, 𝑠𝑠𝑘𝑘

𝑝𝑝 indicates the location of the 𝑝𝑝𝑡𝑡ℎ white 
sharks in repetition k.  White shark convergence behav-
ior is analyzed using the WSO constriction factor, 𝜇𝜇, and 

the parameter 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑟𝑟𝑘𝑘
𝑝𝑝

, which represents the i th best-de-
fined position of the swarm throughout the frequency 
𝑘𝑘 iteration process. 

𝑠𝑠 = [𝑥𝑥 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1, 𝑥𝑥)] + 1                  
(17) 

where the random integers in the vector 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1, 𝑥𝑥) are 
between 0 and 1. Utilizing the following relationships, 
the variables 𝑏𝑏1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏2 provided in Equation (18) can 
be computed: 
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𝑏𝑏1 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚) × 𝑒𝑒−�
4𝑘𝑘
𝐾𝐾 �

2

                
(18) 

𝑏𝑏2 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚) × 𝑒𝑒−�
4𝑘𝑘
𝐾𝐾 �

2

                
(19) 

where the highest and lowest velocities of movement 
for great white sharks are denoted by 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 . A 
1.5 and a 0.5 are assumed for 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚  in this sit-
uation. Based on the following formula (22) the white 
shark position is updated. 

𝑠𝑠𝑘𝑘+1
𝑝𝑝 = �

𝑠𝑠𝑘𝑘
𝑝𝑝 ∙ ¬⨁𝜏𝜏0 + 𝑢𝑢𝑢𝑢 ∙ 𝑎𝑎 + 𝑙𝑙𝑙𝑙 ∙ 𝑎𝑎

𝑠𝑠𝑘𝑘
𝑝𝑝 + 𝑠𝑠𝑘𝑘

𝑝𝑝

𝑔𝑔

𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝑚𝑚𝑚𝑚      

                                                                                                         
(20)               

where 𝜏𝜏0 is a logical vector, 𝑢𝑢𝑢𝑢 and 𝑙𝑙𝑙𝑙 are the upper and 
lower limits of the search space, 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 represent for 
binary vectors, 𝑔𝑔 represents the white shark's wavy mo-
tion frequency, and ¬ is the negation operator. One ap-
proaches the best shark in the following manner: 
𝑠́𝑠𝑘𝑘+1
𝑝𝑝 = 𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 + 𝑣𝑣1𝐻𝐻𝑠𝑠����⃗ × 𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣2 − 0.5)𝑖𝑖𝑖𝑖 𝑣𝑣3 < 𝑊𝑊𝑠𝑠 (23) 

 

Figure 4: Flow chart of White Shark Optimization 

where 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 are random numbers between 0 and 1, 
and 𝑠𝑠𝑘𝑘+1

𝑝𝑝  represents the new location of the i th white 
shark to the prey. Given that it returns either 1 or −1, 
𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣2 − 0.5) can be used to reverse the search's di-
rection. 𝐻𝐻𝑠𝑠  indicates how far away the prey is from the 
white shark, while 𝑊𝑊𝑠𝑠 describes how strong the shark's 
sight and smell senses are. The flowchart provided in 
Figure 4 illustrates the shark optimizer's operating prin-
ciple. 

4 Result and Discussion 
The efficiency of the proposed MANC Net method is as-
sessed in its performance through comparative deep 

learning-based ANC methods. To develop the pro-
posed framework's performance evaluation by com-
paring its parameter values for accuracy, specificity, 
sensitivity, NMSE, STOI, and PESQ to those of other tra-
ditional techniques. 

Figure 5 represents the input signals and the outcomes 
of the resultant denoised signals after the active noise 
cancellation process. The input signals comprising dif-
ferent intensities of waveforms are subjected to the 
proposed active noise cancellation process using hy-
brid CNN-LSTM, the outcomes of classified outcomes 
yield precise text voice signals with no interference of 
noise signals in the outcome end.  

 

(a)                                           (b) 

 

(c) 

Figure 5: (a) Input signal (b) Interference signal (c) De-
sired Signal 

4.1 Performance metric 

The results enumerated the performance assessment 
of the proposed method in terms of accuracy, specific-
ity, sensitivity, NMSE, STOI, and PESQ with other noise 
cancelation systems. 

 

(a)                                               (b) 

Figure 6: Training and testing of proposed method (a) 
Accuracy (b) Loss 

Short-Time Objective Intelligibility (STOI): The cor-
relation coefficient between the temporal envelopes of 
time-aligned reference signals and processed signals 
inside shorter time overlapping segments served as the 
basis for the STOI metric. 
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Perceptual Evaluation of Speech Quality (PESQ): 
The PESQ metric refers to a set of standards that in-
clude test methods for automatically evaluating 
speech quality based on connections made through a 
calling system's user experience. 

Normalized Mean Squared Error (NMSE): The MSE 
measure that has been normalized by signal power is 
called the NMSE. In the ANC model, the error-signal 
power was typically employed as a quality parameter 
for noise attenuation.  

Figure 6 (a) explicates the accuracy of the training set 
and the validation set if the classified outcomes are 
brought out perfectly. The accuracy of the training re-
sults in denoise of audio signals produced the classifi-
cation outcomes at a higher rate of accuracy. Figure 6 
(b) presents the loss of signals while performing the 
ANC process. The loss attained in the training phase 
seems to be lower in comparison to the validation loss.  

 

Table 1: PESQ estimation for different noise 

NOISE PESQ (0 
dB) 

PESQ (5 
dB) 

PESQ (10 
dB) 

PESQ (15 
dB) 

Car 4.1578 4.1001 4.1481 4.1785 

Children 
playing 

4.1485 4.1675 4.0458 4.2475 

Drilling 4.1078 4.1369 4.1785 4.2785 
Street 
music 

4.2745 4.1284 4.2758 4.2775 

Dog bark 4.1201 4.1234 4.2785 4.2845 

Table 1 shows the PESQ scores for different noise types 
at various input PESQ levels: 0 dB, 5 dB, 10 dB, and 15 
dB. At 10 dB, dog barking sound (4.2785) and Street 
noise (4.2758) lead to performance. At 15 dB, dog bark-
ing noise achieves the highest PESQ score (4. 2845), fol-
lowed by drilling noise (4. 2785). Overall, the proposed 
method performs best under Street noise at 0 dB, and 
dog barking noise at 15 dB.  

4.2 Comparative analysis 
The effectiveness of the proposed MANC Net approach 
was assessed in comparison to that of other ap-
proaches to demonstrate its accuracy and efficiency.  
The proposed MANC Net approach is compared with 
the current techniques, including Custom FxLMS [17], 
deep ANC [19], CsNNet [22], MCANC [23], and GFANC 
[25]. 

Table 2: Performance of Proposed ANC model 

Models NMSE STOI PESQ 

Unprocessed 0 0.79 1.95 

Custom FxLMS [17] -4.54 0.71 1.84 

deep ANC [19] -6.55 0.69 1.73 

CsNNet [22] -10.6 0.72 1.71 

MCANC [23] -10 0.84 2.26 

GFANC [25] -11 0.88 2.30 

Proposed -12 0.92 2.35 

Table 2 depicts the numerical values of STOI, PESQ, and 
NMSE metrics values of existing Custom FxLMS [17], 
deep ANC [19], CsNNet [22], MCANC [23], and GFANC 
[25] methods and it compares with proposed MANC 
Net method. The proposed method possesses a higher 
PESQ value, (2.35) and a higher STOI value (0.92) reveal-
ing the higher performance in denoise behavior. The 
least values of NMSE (-12) values are gained for pro-
posed active noise cancellation techniques.  

Table 3: Comparative analysis of proposed model clas-
sifier for different datasets 

Meth-
ods ANN RNN CNN LSTM 

Proposed Opti-
mized CNN-
LSTM 

ESC-10 70.15 72.15 78.31 82.15 91.32 

ESC-50 72.36 61.54 60.1 85.45 92.35 

UrbS8K 79.08 83.7 86.15 89.45 98.56 

Table 3 represents the noise cancellation outcomes 
from input signals of the proposed Hybrid CNN-LSTM 
classification approach in terms of accuracy. The out-
comes in denoising of input signals, from different da-
tasets such as ESC-10, ESC-50, and UrbanSound8K da-
taset. For the UrbanSound8K dataset, different classifi-
ers yield higher accuracy in classification for the Opti-
mized CNN-LSTM classifier (98.56%).  

 

Figure 7: Performance analysis of proposed with exist-
ing methods 

Figure 7 shows the comparative analysis performed in 
assessing the classification accuracy of the proposed 
MANC Net model with other FxLMS [17], deep ANC 
[19], CsNNet [22], MCANC [23], and GFANC [25]. From 
the figure, it explicates that the proposed noise cancel-
lation method, shows higher training accuracy 
(98.56%), higher specificity (95.12%), and high sensitiv-
ity (99.32%) than other existing ANC methods. The 
overall accuracy of the proposed is 9.1%, 8.7%, 7.9%, 
3.4%, and 1.5% better than FxLMS, deep ANC, CsNNet, 
MCANC, and GFANC respectively. 

5 Conclusion 
In this research, Multitude Active Noise cancellation us-
ing White Shark Optimized CNN-LSTM Network (MANC 
Net) has been proposed.  Initially, Dual tree complex 
Wavelet transform is utilized to enhance the quality of 
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audio signal with multitude noise and the signal fea-
tures are extracted using community detection based 
Genetic Algorithm. Afterwards based on extracted sig-
nal, interference and desired signals are classified using 
hybridized Convolutional neural network - Long short-
term memory (CNN-LSTM). Additionally, the hyper pa-
rameters of CNN-LSTM are tuned using White Shark op-
timization for better accuracy. The efficiency of the pro-
posed method is evaluated using accuracy, specificity, 
sensitivity, NMSE, STOI and PESQ. The proposed 
method possesses higher PESQ value, (2.35) and higher 
STOI value (0.92) reveals the higher performance in de-
noise behaviour. The overall accuracy of the proposed 
is 9.1%, 8.7%, 7.9%, 3.4%, and 1.5% better than FxLMS, 
deep ANC, CsNNet, MCANC, and GFANC respectively. 
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